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Abstract

While the US Environmental Protection Agency phased out use of leaded gasoline prior to the
year 2000, an exemption for aviation gasoline remains in place to date. Leaded aviation gaso-
line’s use is widespread — around 500,000 gallons/day in the US — and its pollution is centralized
at thousands of airports. Starting from the premise that noise pollution is the salient dis-
amenity associated with residing near airports, I study how information shocks about the risks
from leaded avgas affect housing prices in the vicinity of over 1000 US general aviation airports.
I find little evidence that local prices respond to (i) substantial changes in EPA ambient lead
standards, (ii) revisions to airport air quality monitoring requirements, (iii) litigation-mandated
local disclosure letters, or (iv) variations in local lead emission levels from aviation traffic. I
do find strong initial price responses following reported violations of ambient lead standards,
consistent with an immediate, short-run change in risk perceptions. I tie these findings to the
environmental justice literature by studying neighborhood demographic compositions in lower-
and higher-information time periods. When less information about lead risk is available, I find
that neighborhoods within 1000m of an airport, especially those downwind, have higher percent-
ages of minority inhabitants, lower median incomes, and a less educated populace. Following the
release of new information, demographic changes align with a sorting narrative: neighborhoods
within 1km of an airport in violation of ambient lead standards see a decline in the population

of children under age ten, a shift in racial demographics, and a fall in median income.
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1 Introduction

Economists have long viewed the provision of up-to-date and unbiased pollutant information as
an essential component of environmental policy. In the absence of complete information about
emission levels and toxicity, individuals’ decisions on matters such as where to live may be sub-
optimal. In this paper, I add to a growing body of research that examines consumer responses to

environmental information shocks. In particular, I study price responses in local housing markets
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during a series of information disclosures pertaining to potential airborne lead risk at general avia-
tion facilities in the United States. I then evaluate these results in the context of recent theoretical
work showing that missing or incorrect pollution information can worsen issues of environmen-
tal injustice (Hausman and Stolper, 2020), and argue that “hidden pollution” is likely present in
airport-proximate neighborhoods due to noise being the salient local disamenity.

Often cited as a cornerstone success story of US environmental policy, regulation from the
Environmental Protection Agency (EPA) targeting leaded automotive gasoline reduced average
airborne lead concentrations in the US by a factor of over ten between 1980 and 2010. Despite
this broad and dispersed reduction, localized airborne lead pollution remains common in some
areas. Industrial manufacturing, electricity generation, smelting, and refining are well-known and
visually apparent sources of such pollution. But following the adoption of more stringent industrial
air quality standards in the mid-2000s, aviation gasoline is by far the largest remaining source of
ambient lead in the US.

General aviation airports are network hubs for lead-emitting aircraft. According to data from
the 2008 National Emissions Inventory, localized lead emissions at these facilities accounted for
58% of annual airborne lead in the US (EPA, 2014). Research in public health, engineering,
and transportation studies have demonstrated that well-trafficked airports and their downwind
vicinity act as lead hotspots. Scientific evidence has also linked elevated blood lead levels with
close residential proximity to an airport. Elevated blood lead levels are associated with a bevy of
developmental problems in children, as well as cardiovascular and reproductive issues in adults. If
potential homebuyers are aware of these risks to children and themselves, neoclassical economic
theory suggests that expected current and future exposure levels from a nearby lead pollution
source should capitalize into a property’s sale price.

Evidence on homebuyers’ attentiveness towards environmental information is mixed, however.
In research studying housing market responses to the publication of Toxic Release Inventories
(TRIs), perhaps the most comparable form of environmental information disclosure to those I
consider here, some papers find strong price effects (Mastromonaco, 2015; Moulton et al, 2018),
while others do not (Bui and Mayer, 2003; von Graevenitz et al, 2018). A similarly varied set of
sales price results exist following inclusion or delisting of local Superfund sites (Gayer et al, 2000;
Greenstone and Gallagher, 2008; Gamper-Rabindran and Timmins, 2013).

In the face of this mixed set of evidence, my paper adds a case study to the literature by em-
pirically testing the limits of property market capitalization following varied information releases
concerning emissions and potential health hazards. I study a series of events from 2008 to 2015,
including federal policy revisions, air quality monitoring releases, and a litigation-mandated local
information disclosure. This evolving information environment provides a set of natural exper-
iments that can test the degree to which housing markets in close proximity to airports viewed
potential exposure to elevated lead emissions as a salient local attribute. I frame these information
environments along two characteristic spectra — public/private and generic/specific — and show

empirically that specific, public information is strongly capitalized in the short-run, while more



generic or privately-held information does not move housing markets.

Using several variations on a distance-gradient-based difference-in-differences identification strat-
egy (Currie et al, 2015; Haninger et al, 2017; Taylor et al, 2016), I find a large but fleeting price
response following the initial release of airport-level ambient lead monitoring results — a location-
specific, public information event in 2013. At facilities found to be in violation, sales prices within
1km drop roughly 30% in initial months, tapering off to an average 10% decline over the full course
of the first year. Similar research designs built around two information events that were also public
but less specific in nature — an order-of-magnitude reduction to the EPA’s ambient lead standard
in 2008, and a 2009 federal policy revision mandating air quality monitoring at high-lead-emission
facilities — uncover no local price responses. Lastly, I find that private information provision about
airport-generated lead pollution from litigation-generated local disclosure letters in 2015 also had
null effects on property markets.

In aggregate, I take this body of results as a strong signal that air pollution is rarely a local
feature that homebuyers note while considering a purchase near airports. Appealing to theory
described in Bordalo, Gennaoli, and Schleifer (2013), I posit that noise pollution is typically the
salient local attribute of these properties. This results in a relative underweighting of potential lead
exposure in homebuyers’ decision calculus when compared to property purchases with other, more
salient sources of lead exposure.E My empirical results suggest that lead pollution only becomes
salient in this context when an airport falls into noncompliance with federal ambient lead standards.

In the final section of the paper, I examine environmental justice outcomes in this pollution and
information setting. This setting is opportune for empirically testing theoretical propositions from
Hausman and Stolper (2020). Their paper argues that when households are underinformed (even
uniformly) about potential health damages from pollution and sort based on income and more
salient but pollution-correlated local disamenities (like airport noise), low-income households will
dispropotionately suffer from pollution exposure and excess welfare losses. The welfare implications
of this information-centric narrative has added appeal in the context of lead, which is largely a legacy
pollutant that predominantly remains in poorer environs.

First, I test whether poorer households or those headed by racial/ethnic minorities suffer dis-
proportionate exposure to “hidden” air pollution during the five years prior to EPA airport-level
monitoring. In contrast to a recent EPA report (2020) finding no national disparities in exposure to
avgas-generated lead by race or income, my descriptive analysis using within-airport variation finds
evidence that neighborhoods directly downwind of general aviation facilities have relatively higher
percentages of minority inhabitants, lower median incomes, and a less educated populace. Second,
I study how neighborhoods’ compositions change in the five years following the EPA’s release of
their lead monitoring results at 17 airports. Though these results rely on a fairly small sample

size, I observe demographic changes that align with environmental sorting: neighborhoods within

!Several recent papers have provided evidence that discrete changes in lead exposure from paint and plumbing
do capitalize into home values (Billings and Schnepel, 2017; Theising, 2019; Christensen et al, 2019). Others have
shown that information releases or policy mandates about potential lead exposure generate property market effects
(Christensen et al, 2019; Mastromonaco, 2015; Gazze, 2020).



1km of an airport in violation of ambient lead standards see a decline in the population of children
under age ten, a shift in racial demographics, and a fall in median income. While these patterns
are more suggestive than causal, they are consistent with the “coming to the nuisance” narrative.

The remainder of the paper is as follows: the next section discusses background information
on the health risks of lead and details the ongoing use of lead in aviation gasoline. Section 3
describes the data used in this paper. Section 4 examines how local property markets respond to
new information about potential lead exposure near general aviation airports. Section 5 studies the
sociodemographic characteristics of households who live close to these airports, looking for evidence

of environmental injustice patterns. Section 6 concludes.

2 Scientific and policy background information

Consumption of lead has serious health repercussions for all humansE, but especially for children
and pregnant women. Exposure has been shown to decrease fecundity and fertility in both men
and women, and lead consumption by pregnant mothers is associated with increased rates of fetal
mortality and infant health complications.E After birth, exposure is associated with developmental
problems in infants and children, including diminished 1Q, hyperactivity or behavioral problems,
and delayed physical growth. These effects can compound through childhood in the fashion de-
scribed by Currie et al (2014): lead exposure in a child’s early years has been linked with poor
educational outcomes, propensity for delinquency and crime, and diminished lifetime socioeconomic
Status.a

Today, lead is mostly a legacy problem in the US. The most common sources of modern human
contact include lead paint and/or piping in older homes and workplaces, remnants in dust or soil
that are naturally occurring or from previous lead emissions, and current emissions from industrial
or mechanical sources. Notably, while the use of lead has been banned or restricted from several of
these sources — namely, paint (1978), plumbing (1986), and automotive gasoline (1996) — the use
of leaded aviation gasoline remains unrestricted in the US.

Aviation gasoline (avgas) is used by piston-fired plane engines. Inclusion of tetraethyl lead in
the gasoline compound prevents engine knock and potentially catastrophic engine failure. Piston
engine aircrafts (PEA) are common in US aviation and typically seat 1-12 passengers, making
relatively short trips covering distances of under 500 miles. In 2015, they accounted for just over
two-thirds of the general aviation fleet in the US (GAMA, 2016). Despite some PEAs’ ability to fly
on non-ethanol unleaded automobile gasoline (mogas), avgas remains the standard gasoline on offer
at general aviation airports across the country, with only a handful offering the mogas alternative
(Kessler, 2013).

2See Kosnett et al, 2007 and Lanphear et al, 2018 for recent summaries of health impacts resulting from adult
exposure.

3See NTP, 2012; Clay et al, 2014; Clay et al, 2018; Grossman and Slusky, 2019.

4See, amongst many others in this rapidly expanding literature: Rau et al, 2015; Reyes, 2015; Reuben et al, 2017;
Aizer et al, 2018; Grongvist et al, 2020.



Following the EPA’s 2008 downward revision of the national ambient lead standard from
1.51g/m? to 0.15ug/m?3, several parties in environmental policy circles speculated on the poten-
tial for airports with heavy PEA traffic to be in exceedance of this level. Monitoring at several
airports has since confirmed this to be the case: an EPA study of 3-month average airborne lead
concentrations at 17 general aviation airports across the US found two airports in exceedance of
the standard (EPA, 2013). In addition, dispersion modeling and soil testing have confirmed the
existence of lead hotspots at airports with heavy PEA traffic. Dispersion models used by Feinberg
and Turner (2013) and Feinberg et al (2016) show airborne hotspots in run-up, taxiing and takeoff
areas, while Carr et al (2011) find elevated air and soil lead concentration gradients up to 900m
downwind of the airport. McCumber and Strevett (2017) show increased soil lead concentrations
downwind of airport activity areas, particularly fueling stations.

This set of evidence can be further analyzed in light of three recent academic papers showing a
robust dose-responsive relationship between proximity to PEA traffic and blood lead level (BLL)
in children and adults. Using data from six counties in North Carolina, Miranda et al (2011) find
a well-powered correlation between a child’s BLL and their distance to an airport. The authors
measure BLL continuously and find that children residing close to airports have average BLL levels
that are 3-5% higher than baseline. The strongest effects are within 500m, though significant
effects remain consistently out to a distance of a kilometer. Expanding on their research design and
better controlling for confounding factors such lead paint, point source polluters and wind direction,
Zahran et al (2017) use data from Michigan to elicit evidence of a relationship out to distances
of 3km.E The paper also makes use of an exogenous shock - reduced piston engine traffic in the
months following the terrorist attacks of 9/11 - to causally demonstrate a reduction in average
child BLL during periods of decreased aviation tlraﬂqlc.E Finally, Park et al (2013) study BLLs of
aircraft maintenance crews across airports in South Korea. Controlling for individual and lifestyle
characteristics, the authors find elevated BLLs for crew members who work closer to the runway
at airports using leaded gasoline.

Despite this wide-ranging support for a scientific link between airport proximity and elevated
BLLs, the EPA — as of date — has declined to make an official endangerment finding about leaded
avgas. While joint efforts between the EPA and Federal Aviation Administration (FAA) are aiming
to find a suitable universal fuel replacement for avgas, an endangerment finding would dramatically
speed up the timeline and likely engender immediate restrictions on leaded avgas similar to those
restrictions on paint, pipes or auto gasoline. In the meantime, proactive pilots and airports have

been stuck with the costs of certifying their plane as mogas-safe or providing an alternative fuel.B

5Compared to children living more than 4km from an airport, the authors find that children living within one
kilometer of an airport are 25.2% more to possess a BLL above the 5ug/dL current Centers for Disease Control
(CDC) threshold and 44.9% more likely to possess a BLL above the 10ug/dL threshold previously held by the CDC.

5Though not directly related to lead emissions from avgas, recent quasi-experimental research by Hollingsworth
and Rudik (2021) also finds evidence of decreased BLLs at even larger distances following NASCAR’s switch to
unleaded auto racing fuel in the mid-2000s.

"The FAA mandates additional compliance in order for PEAs to run on unleaded fuel- the cost of this supplemental
fuel-type certification runs into the thousands of dollars. Airports can also face infrastructure costs into the tens of
thousands of dollars when retrofitting their fuel provision systems.



Given these costs, private uptake of these alternative technologies has been relatively muted. In
the absence of a universal fuel alternative or shift in federal policy, avgas seems likely to remain

the standard into the immediate future.

3 Data materials

In this section, I describe data used to undertake the analyses that follow. All data mentioned is
publicly available, except Zillow’s ZTRAX product.B

Airport location and emissions: My primary research goal is understanding how informa-
tion shocks impact localities near airports with avgas-generated lead pollution. Though there are
nearly 20,000 US public-use airports registered via the FAA’s Form 5010, I focus my attention on
a subset of general aviation airports with substantial PEA traffic.

My airport inclusion criterion is ultimately based on the EPA’s Toxic Release Inventory (TRI)
lead reporting threshold. Industrial facilities are required to annually report any manufacturing,
processing, or other activity that uses more than 100 pounds (0.05 tons) of lead. Though airports
are not industrial and therefore not obligated to report lead byproducts under these Right-to-
Know regulations, many do have sufficient annual PEA traffic to produce emissions that exceed the
reporting threshold. Given the need for an inclusion standard and the information-based similarites
between the TRI and my study, I elect to restrict my airport sample to all US airports with at least
0.05 tons of reported lead emissions in 2008. I procure estimates of airports’ 2008 lead emissions
from the EPA’s point source National Emissions Inventory. When merged with FAA’s database,
which provides general information about the airport including location, runway bearings, and
gasoline types offered for sale, I am left with a baseline sample of 1,326 airports scattered across
the US’s 50 states and the District of Columbia.

Because my analyses are spatial in nature, I require a matching airport shapefile. I draw
this shapefile from three sources. The primary source is the “North America Airports” boundary
shapefile produced by ESRI. For airports not included in this base shapefile, I supplement the data
by including user-drawn boundaries from an OpenStreetMaps API. Finally, for the small number of
airports still missing boundaries, I simply impute the airport’s longitude and latitude as reported
in the FAA 5010 database.

Real estate sales transactions: To measure consumer perception of lead risk from avgas
emissions, 1 will study the evolution of housing prices over time. Economists have long engaged
real estate markets to study the implicit valuation of local public (dis)amenities. Real estate
transactions have proven a sensible barometer of amenity value for several reasons: the immovable
and fixed supply of land, the typically consequential financial nature of a property transaction, the
widespread availability of data, and a flexible set of econometric tools capable of answering varied

questions.

8Data provided by Zillow through the Zillow Transaction and Assessment Dataset (ZTrax). More information on
accessing the data can be found at http://www.zillow.com/ztrax. The results and opinions are those of the author
and do not reflect the position of Zillow Group.



I rely on transaction and assessor real estate data from the October 2020 version of the ZTRAX
database. My analyses include transactions occurring between October 2007 and March 2016. 1
omit non-arms-length sales based on deed type and the database’s inter-family flag, and further
constrain my sample by excluding transactions on multi-family properties and those with non-
residential land uses. To follow best practices and remain conservative in analysis (Bishop et al,
2020), I drop transactions with a sales price of less than $10,000 or more than $10 million.

To ensure a broad geographic coverage while maintaining an ability to consistently control
for property-level characteristics, I ultimately extracted the following variables from the database:
sales price, date of sale, age of home, total bedrooms, total bathrooms, and the property’s lot size.
Using each property’s latitude and longitude coordinates, I calculate two additional geographic
measures. The first is a measure of the minimum distance (in kilometers) from the property to
its nearest airport’s spatial boundaries. I use this distance measure to restrict the study sample
to only properties within 5 km of a relevant airport.a The second is a compass bearing from the
centroid of the airport to the property in question. This latter measure is used to assign wind
frequency and flight paths to each property.

Lastly, Zillow procures its raw data from county assessor and recorder offices. In some US states,
recorded documentation of property transactions are not required to disclose sales price. Given that
ZTRAX’s coverage of transactions with recorded prices are exceptionally sparse in these 11 states —
and that those including such information are likely highly selected — I elect to omit all transactions
falling in non-disclosure states from my price analyses.

American Community Survey (ACS) data: I am also interested in the demographic
composition of neighborhoods in proximity to airports during the study period. I obtain this
information at a fairly high spatial resolution by incorporating 5-year ACS block group data on
income, housing status, education level, and race. I rely on measures from the 2009-2013 and
2014-2018 samples. Using sample-consistent block group shapefiles from the 2010 Census, I again
create measures of neighborhood distance and compass bearing using the block group’s centroid.
Because my statistical analysis in Section 5 relies solely on within-airport distance variation, I elect
to omit all observations from airports where fewer than five census block groups fall within 5km
of the airport boundary. As such, my ACS-based results in that section are representative for
fairly population-dense areas; I cannot say much about how my findings in this section hold for the
roughly 300 airports in more rural areas where block group geographies span broader areas.

Flight data: In some heterogeneity analyses, I examine differential effects based on airport
traffic levels. Data on flight activity comes from the FAA’s Traffic Flow Management System.
This database collects information from registered flight plans and automated detection on the
National Aviation System for several thousand airports in the US. I extract annual airport-level

flight operation counts for PEAs and separately for all aircraft.@

9If the resulting set of transactions for an airport is smaller than 100 for the entire study period, I drop the
airport from my sales sample due to thin markets. This happens for a small number of airports in rural areas.

10These states are: Alaska, Idaho, Kansas, Louisiana, Mississippi, Montana, New Mexico, North Dakota, Texas,
Utah, and Wyoming.

HPEA are small aircraft that often fly at lower altitudes. Due to how the TFMS captures air traffic, it is possible



Wind data: I procure airport-level historic wind data from windhistory.com. The measures I
use from this website include wind direction counts and average speeds for each 10 degree tranche
of the compass rose during the period 2006-2010. The raw weather observations used to create the
website’s cleaner measures come from NOAA’s METAR database. This raw data is not collected
regularly at the smallest public and private airports, so I lack wind measures in those cases. I
aggregate the website’s direction counts and wind speeds from the 10 degree level up to compass
octants (N,NE,E,SE,S;SW, W NW) to reduce noise, then assign properties and census block groups
wind frequency and intensity measures based on their compass bearing relative to the airport.

In summary: This section concludes with references to summary statistics and figures de-
scribing the final study samples and database. maps the national spatial coverage of 1,326
airports with Pb emissions levels exceeding 0.05 tons in 2008, and indicates those included in my
sales analysis. A set of detailed summary statistics describing sales transaction and block-group-

level demographics for a representative airport — Zamperini Field in Torrance, CA — are available

in Appendix 'Table A]J and [Table Ai These transactions and block groups are also visualized for

Zamperini Field in lFigure 2 and tE‘igure fi; as I now transition into describing my research design,

these figures should provide a sense of the within-airport spatial variation I rely on to identify

parameters of interest.

4 Property value capitalization of environmental information

In this section, I describe a series of regulatory and legal information releases pertinent to lead-
emitting airports, and employ a research design that detects whether local property markets were
affected by these information shocks. These events occurred between October 2008 and March 2015;
in , I illustrate an overview of this timeline and the respective event windows studied. To
maintain a clear narrative in what follows, I work through the four events chronologically, rather
than thematically. Nevertheless, this section’s intended thematic take-away is that differing classes
of information provision on the same general subject result in varied short-run housing market
outcomes.

Firming up ideas simply, let information on local environmental quality be characterized along
two dimensions: public versus private and generic versus specific. The textbook neoclassical the-
ory underlying efficient housing markets and hedonic pricing assume all relevant information is
public and therefore fully captured by the price mechanism. A shift from private to public informa-
tion reduces information asymmetries, and is the motivating theory behind mandatory disclosures
(Grossman, 1981; Chau and Choy, 2011). Information can also be generic or specific in nature: for
example, the former type could be of the form “this chemical is toxic” while the latter may read

)

like “this chemical is toxic and present at the following set of products...”. In essence, a specific

piece of information may be more directly actionable to the information receiver.@ In alignment

that this data systematically undercounts PEA flights. To my knowledge, no better source of similar data exists for
PEA traffic counts. For more details on measurement: https://aspm.faa.gov/aspmhelp/index/TFMSC.html
12A distinct but vaguely related dimension of information is coarseness versus complexity (Houde, 2018). For



with this simple, two-dimensional economic and behavioral framework, I will find strong housing
market capitalization of information about airborne lead at airports when provision is public and
specific in nature. When information is released privately or is more generic in nature, housing
markets do not respond.

The next subsection describes my empirical strategy. Subsections 2-5 highlight results from each

of the four information events I study. Subsection 6 summarizes the robustness of my findings.

4.1 Empirical strategy

To detect information-driven deviations in local housing prices, I turn to variations on a simple
difference-in-differences econometric framework; within these variations, I examine potential het-
erogeneities in price response. In each case, I study event windows spanning 365 days before and
after an information release. Thus, I am implicitly looking for short run differential price effects.
While the tools I rely on for econometric identification of information capitalization are derived
from the quasi-experimental literature, the underlying methodology of my research design is also
grounded in traditional hedonics (Parmeter and Pope, 2013).

To be clear, however, the empirical exercise undertaken here is reduced-form in nature. I do not
formally disentangle separate marginal prices for co-located airport (dis)amenities like air quality
and noise. Instead, through the lens of home prices, I simply study whether or not newly released
information renders poor air quality more salient to local residents. Thus, I assume a priori that
potential airborne lead does not fall within the spectrum of property markets’ awareness before
these information 1releases.E

The baseline empirical specification is of the form:
log(Price)ijsr = o + BDist; + yPosty + 0Dist; x Posty + 7 + s X t 4+ p; X + €ijst (1)

A log-linear functional form is assumed to ease price comparisons across airports, with ¢ indexing
individual properties, j indexing airports, s denoting states, and ¢ marking a point in time. In all
related models that follow, denote t = 0 on the day of information release. My treatment variable
in this diff-in-diff framework is distance-related. Dist; is a set of indicator variables, differentiating
properties by distance-to-airport bandwidths: those within 1km, those between 1-3km away, and
the base group located 3-5km away. The choice of distance bandwidths is arbitrary, but follows
the literature in allowing capitalization of point-source-derived environmental disamenities to ta-
per off with distance (Currie et al, 2015; Taylor et al, 2016; Mastromonaco, 2015). Post; is an
indicator variable for all property transactions occurring after the information release (¢ > 0). J,
the parameters for the interactions of Dist; and Post; is my estimate of interest.

The model includes calendar month fixed effects () to capture the seasonality of housing prices,

example, a coarse information signal (i.e. pass/fail, efficient/inefficient) simplifies underlying complexity of a product’s
quality. This dimension may well apply to information about air quality (NAAQS thresholds/violations, AQI bins,
etc.) but is not what I focus on here.

3Indeed, my results from section 4.6 lend some support to this assumption.



state-varying time trends (ns X t) to accommodate different regional housing market patterns, and
airport-specific intercepts (o). In models where I include housing structure control variables
(X;: lot size, (lot size)? age of home, (age of home)?, bedrooms, bathrooms, and an indicator for
whether the property is directly under a flight path), I allow (linear) marginal prices (p;) for each
characteristic to vary by airport, in essence modeling separate structural hedonic functions for each
locale. To be clear, while I rely on within-airport distance variation to identify &, I do not allow it
to vary by airport; thus my estimate of these parameters is a simple national average of a distance-
differentiated information capitalization effect in the year following a release. For all results in this
section, I cluster standard errors at the airport level.

The principle assumption required for a well identified estimate in this framework is common
price trends across distance bandwidths after controlling for differences in housing quality, season
of sale, and differential trends across states. The prospect of common trends holding in this case
seems reasonable, given that we consider only properties in a relatively tight neighborhood (5km)
surrounding airports. In addition to these baseline difference-in-differences models, I estimate triple
difference models that are of keener interest. For each event studied in the following subsections,
there are reasons to expect differential treatment responses to information. I discuss these triple

difference variations in turn below, and provide evidence in support of common pre-trends for each.

4.2 Event 1: 2008 revision to lead NAAQS

I now turn to the first information event. To set the stage, it’s useful to note that US regulation of
ambient lead began in 1978. In response to lead’s increasingly apparent danger as a widespread air
pollutant, a NAAQS for total suspended lead particulate was set at 1.5ug/m3. Generally speaking,
as leaded automobile emissions fell from the 1970s-2000s, ambient levels did as well - in early 2008,
only two US areas (East Helena, MT and Herculaneum, MO) were not in compliance with the
1978 standard. This 1.5ug/m? standard remained in place and unchallenged until 2004, when a
lawsuit by an environmental group in Missouri, directed at the EPA’s negligence in reviewing the
lead NAAQS since 1978, resulted in a consent decree mandating review of the standard by 2008.@

The fallout of this litigation produces an information shock in October of 2008. At this time,
the EPA finalized its decision on an updated standard (73 FR 66964). Effective as of 2009, the
primary lead NAAQS would be set at 0.15 ug/m? - a reduction of an order of magnitude. This
substantial regulatory change discretely signaled an update to the EPA’s scientific view on the safe
level of ambient lead exposure. Many lead emitting facilities — including airports — previously well
in compliance with federal air quality regulations, were suddenly above or close to the national
standard.

My first set of regression results investigates whether property markets close to lead-emitting
airports responded to this new information. To emphasize: this NAAQS revision was the EPA’s

first update to airborne lead policy in thirty years, and under full information provision, the size of

'4The Clean Air Act requires the EPA to review NAAQS every five years. Litigation and follow-up documentation
is available here: https://www.epa.gov/naaqgs/lead-pb-air-quality-standards-documents-review-completed-2008
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the change should provide households with an obvious and up-to-date understanding of the health
dangers associated with lead exposure. Of course, whether households note such federal policy
changes is context-dependent, and is what I seek to determine here.

I present my baseline diff-in-diff results in columns (1) and (2) of Table 1. For completeness,
I include specifications both with and without housing-structure controls.=d As expected, results
show that properties closer to the airport sell at a discount on average, both before and after the
information release. This discount is stronger for properties within 1km of the facility, but exists
out to a distance of 3km, confirming that the research design does capture some disamenity value
of airports. Speaking generally, I find this result to hold across all events and specifications, so will
not highlight it further.

My diff-in-diff interaction parameters are more mixed in interpretability. In the preferred spec-
ification shown in column (2), for the properties in closest proximity to an airport, I find a small
but statistically significant decline in prices. One potential threat to interpreting this as a pure
capitalization effect would be the existence of confounding events near the time of information
treatment that could differentially affect pricing by distance to airport. In this particular case,
one can note that my event window occurs in the midst of the 2008 financial housing crisis. It is
entirely conceivable that the real estate market’s collapse could generate sharper price declines in
neighborhoods very close to noisy airports.

To dig into this potential confounding factor, I estimate a triple difference model that seeks to
differentiate the price effect based on perceived pollution exposure intensity. I subdivide airports
into quartile groups by the fraction of their aviation traffic coming from PEAs. Creating a set of
indicator variables for each quartile (Quart;), I then interact these indicators with the diff-in-diff

interaction in Equation (1):

log(Price);js = P1Dist; + B2Dist; x Quart; + y1Post; + y2Post; x Quart;+

(1.1)
~v3Post; x Dist; + §Dist; x Posty x Quartj +FEq .y +pj X +€ijst

This triple difference model allows me to see whether the post-information-release price effect varies
by local PEA frequency. If the capitalization effect is indeed driven by the NAAQS revision rather
than concurrent economic forces, one should expect a stronger decline at airports where PEA traffic
is a larger portion of local flights.

The results from this specification are presented in columns (3) and (4) of . Summing
point estimates in these columns, I find little evidence of heterogeneity that could lend support
for the pure information capitalization effect driving stronger price declines near airports. For
households within 1km of an airport, post-treatment price decreases are largest for the bottom and
2nd quartile - those airports with lower rates of PEA traffic. Put another way, airports in these

quartiles are likely to be larger, commercial aviation facilities, with higher rates of jet traffic and

My preferred estimates include these controls to account for potentially differing housing structure compositions
across distance groups. However, 25-30% of sample-eligible airports are in counties where Zillow does not have this
set of complete information, so I share both sets of results to allay any selection-related concerns. As shown, none of
my results differ wildly based on this distinction.
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very few PEA flights. In any case, group differences in estimated heterogeneity are economically
small, and not statistically significant. I supplement the parametric estimation of Equation (1.1)
with a non-parametric event study in . With an identical estimation sample, I use a
local polynomial estimator (Fan and Gijbels, 1996; Haninger et al (2017); Guignet et al (2018))
on residuals of log(price) after conditioning on airport and month fixed effects, state-specific time
trends, and housing structure characteristics. I fit the estimator separately for each quartile and
distance bin, and allow for a break in respective residual price functions at t = 0. A visual inspection
of these event studies demonstrates fairly common pre-trends across treatment groups and confirms
a relative lack of heterogeneity in the post-information period.

Taking this set of results in its entirety, I find limited evidence of information capitalization in
the year following the EPA’s lead NAAQS revision. If a price effect does exist, it appears to be

economically small.

4.3 Event 2: 2010 revision to airport lead monitoring protocols

Following establishment of the new lead NAAQS standard, an initial mandatory monitoring scheme
was put into place. This scheme required facilities with at least 1 ton per year (tpy) of estimated
lead emissions to participate in ambient monitoring. Naturally, not all parties were content: in
early 2009, a group of four environmental nonprofit groups petitioned the EPA to reconsider this
emission threshold, citing the final 2008 NAAQS rulemaking, which included discussion of potential
for facilities with 0.5 tpy to exceed the NAAQS under a reasonable “worst-case scenario”. After
another round of research and reconsideration, with comments collected from interested parties
and stakeholders, in December 2010, the EPA finalized a revision to the lead NAAQS monitoring
requirements (75 FR 81126). As a compromise of sorts, the EPA’s final decision set the monitoring
threshold at 0.5 tpy for all industrial sources, and 1 tpy for all airports. In addition, to gather
evidence on the potential for NAAQS violations at airports with less than 1 tpy of lead emissions,
the finalized decision mandated the study of ambient lead levels at a set of airports with annual
emissions greater than 0.5 tons. These airports were to be selected so as to ensure a variety of
physical, geographic, and technical characteristics. In turn, this could shed light on whether certain
airport attributes may lead to difficulty in maintaining compliance with the updated lead NAAQS.

I leverage this shift in monitoring policy as a second information release event. In a perfect
information setting, the public should interpret this new rule as a sign of the EPA’s concern
for potential health risks near airports with lower absolute levels of emissions than previously
acknowledged. Moreover, the discrete threshold set in this revision provides an interesting natural
experiment. Airports below the monitoring threshold remain “safe” in terms of the NAAQS as
they will not be monitored, while those above the threshold are eligible for monitoring and could
eventually be found in violation.

As before, I run a baseline diff-in-diff analysis that considers distance-varying average capi-
talization of this new information across all airports. For this event, however, I supplement the

analysis with a triple differences estimation that tests for heterogeneous price responses at airports
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above (Eli

g; = 1) and below (Elig; = 0) the newly established lead monitoring eligibility threshold
of 0.5 tpy:E

log(Price);jsr = P1Dist; + B2Dist; x Elig; + 1 Post; + v2Post; x Elig;+ (1.2)
73Post; x Dist; + 6Dist; x Post, x Elig; + FEa ., + pi X + ijst '

Estimation results are presented in . In columns (1) and (2), I do not find any meaningful
evidence of an average post-monitoring-revision effect. In column (2), my preferred specification,
the point estimates imply an average discount of less than one percent for all homes closer than 3km,
relative to the base post-info average of homes within 3-5km. A similar story holds for the triple
difference models in columns (3) and (4): effect sizes are again relatively small, though noisy in this
case due to limited statistical power. In results from column (4), my estimates imply (imprecisely)
that becoming eligible for monitoring actually increases property prices for homes within 1km of an
airport, relative to neighboring properties. Similarly to Section 4.1, I run a non-parametric event
study analysis, and share the results in . No systematic story emerges from this visual
exercise, though for sales within 1km, it is clear that prices at eligible airports did not systematically
decline. Overall, I take this set of results as moderate evidence that revisions to federal monitoring

did not capitalize into housing prices via a risk awareness channel.

4.4 Event 3: Release of monitoring study results

The third information revelation event I study is the release of results from a mandatory ambient
lead monitoring program at 17 of 55 US airports with emissions estimated to be above 0.5 tpy.
Recall that this subset of airports was selected for monitoring in order to better understand whether
and when airport facilities generate ambient concentrations comparable to industrial facilities of a
similar emissions-based size. While limited research on ambient lead levels at airports had been
undertaken previously, the consensus was that more data was needed. Findings from this study —
namely the calculation of a 3-month rolling average ambient Pb concentration — would determine
where monitoring should occur in the future. Summary statistics in Appendix suggest
the selection of airports into the study was quasi-random in observables, as chosen facilities vary
immensely in geography, flight frequency, and estimated emission levels.

The EPA released their preliminary monitoring findings to the public in June 2013. The two
policy revisions I used as information treatments in sections 4.1 and 4.2 had the ability to affect
perception of health risk and likelihood of violation, but did not provide information on actual
ambient air quality. The release of this monitoring information, however, allows an observer to
directly determine whether the monitored airport is in compliance with the lead NAAQS or not.

The public results showed that two of the seventeen monitored airports were found to be in
violation of the lead NAAQS: San Carlos Airport in San Mateo County, CA (0.33 ug/m?) and

16 Appendix lable Ag holds summary information for the roughly 50 airports that fell above the 0.5 tpy monitoring
threshold based on the 2008 NEI.
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McClellan-Palomar Airport in San Diego County, CA (0.17 ug/ mg)@ Among the fifteen airports
found to be in compliance, thirteen were found to have concentrations below 0.075ug/m?, releasing
them from future monitoring requirements under rules of the revised NAAQS.

Again, I use the release of this information to frame a diff-in-diff and triple difference analyses.
In the triple difference model, I look for heterogeneous price responses to the monitoring results
across four groups: (a) homes near airports with less than 0.5 tpy of lead emissions; (b) homes
near airports that were not monitored, but did report estimated emissions of more than 0.5 tpy;
(c) homes near airports that were monitored and found to be in compliance, and (d) homes near
airports that were monitored and found to be in violation. I denote these groups with indicator

variables Monitor;:

log(Price)ijs¢ = B1Dist; + f2Dist; x Monitor; + v Post; + vy2Post; x Monitor;+ (1.3)
~v3Post; x Dist; + 6Dist; x Post; x Monitor; + FEq 7, + p; Xi + €ijst .

The main parameter estimates for these regressions are displayed in As expected, in
columns (1) and (2), I find that these monitoring results had little impact on average prices near
airports across the US. There is no statistically significant difference in prices for homes less than
3 kilometers away from airports, relative to the base group located 3-5 kilometers away. But this
average effect masks meaningful heterogeneity. In columns (3) and (4), I find that prices near
airports that are now found in violation of the federal NAAQS suffer declines that are statistically
significant at the one percent level. While all homes (out to distances of 5km) near these offending
airports see average prices fall in the post-result period, homes within one kilometer bear an ad-
ditional discount on the order of roughly 10%. Notably, I find relatively little price impact for all
homes near airports that were found to be in compliance with the NAAQS, regardless of distance.
And high emission airports that were eligible for monitoring but did not receive it also show little
price response following the results’ public release.

To dig into this striking result for properties near NAAQS-violating airports more carefully, 1
turn to the associated event study graphic shown in . Across the distance-based panels,
the common trends assumption appears to hold. More notable, however, is the graphic in the
top panel illustrating residual price trends for homes within 1km of an airport. For homes near
violating airports, there is a dramatic downward shift in the residual price function after the
monitoring results were released. This price shock downward is on the order of 30% for the first
few months following the information event, and slowly tapers away, regaining previous price levels
about 6 months afterwards. This is consistent with a variety of previous results finding an initial
“over-response” to information shocks in property markets, followed by an eventual return to local
norms (Figlio and Lucas, 2004; Hansen et al, 2006; Bin and Landry, 2013; McCoy and Walsh, 2018;
Garnache, 2020). In this context, the return to norm occurred in relatively short order, possibly

following push-back regarding technicalities of the EPA’s monitoring procedures, which were raised

" Program’s information release (EPA, 2013) here.
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quickly by both airports found to be in Violation.@. In any case, the statistically-significant price
responses to this information release suggests potential local lead risk became salient to homebuyers

upon a monitoring violation, at least in the short run.

4.5 Event 4: Local lead risk disclosure following litigation settlement

The fourth and final information disclosure event I study was smaller in geographic scale, and
targeted at a number of general aviation airports in the state of California. As such, in this
subsection, I restrict my analysis only to the 129 airports located in this state.

The context behind this information disclosure event originates in a legal battle between an
environmental non-profit group — the Center for Environmental Health (CEH) — and a group of
airports and avgas distributers. This litigation began in 2011 when CEH alleged that the group of
defendants were violating CA Proposition 65, a law that “requires businesses to provide warnings
to Californians about significant exposures to chemicals that cause cancer, birth defects or other
reproductive harm.” The legal proceedings played out in courts for several years, and in December
2014, the case settled with a consent judgment against the defendants.@ Of key interest in my
context is injunctive relief that was specified in the settlement. The 23 California airports included
as defendents were required (a) to display small, 2-foot-by-2-foot warning signs in areas accessible
to the general public, and (b) mail a one-time disclosure letter, including explicit language warning
about lead exposure, to all residences within 1 kilometer of the airport’s border.

The outcome of this settlement (lead risk disclosures to local residents and the general public)
sets up a nice opportunity for another natural experiment. I construct diff-in-diff and triple differ-
ence analyses during the year before and after the information disclosures mandated by the consent
judgment. Once again, the diff-in-diff considers distance bins as separate information treatment
groups for all CA airports, while the triple difference analyses also incorporate variation across

airports that were or were not parties to disclosures resulting from the consent judgment:

log(Price)ijs¢ = B1Dist; + F2Dist; x Disclose;j + y1Post; + y2Post; x Disclose;+ (1.4)
v3Post; x Dist; + éDist; x Post; x Disclose; + FEq 5 + p; Xi + €ijst .

I measure disclosure treatment (Disclose;) in two different ways for my triple difference regressions.
The simplest measure is an indicator for whether a transaction occurred at an airport where signs
and local disclosure letters were mandated. I also use an alternative measure that incorporates
intensity of local lead emissions. This results the following set of airport-specific indicators: those
not in the settlement with low annual lead emissions (< 0.5 tons), those not in the settlement with
high annual emissions (0.5 tons), those included in the settlement with low emissions, and those

included in the settlement with high emissions. This more complex alternative set of indicators

18See an October 2013 alternative airport monitoring report by the San Diego Air Pollution Control District
finding far lower ambient levels here. See the San Carlos Airport Pilots Association’s memo of a similar nature here.

19Court proceedings occurred in Alameda County, CA; the final consent judgment can be obtained from their
website under case number RG-11-600721.

20 Airports included in the judgment are listed in Appendix .
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allows for price responses to disclosure letters and signage to vary by actual intensity of localized
pollution.

Results are presented in . All models in this table include controls for housing structure
characteristics. In column (1), T again find that there is no average price effect across all CA airports
following the lawsuit’s resolution. Indeed, this is what we would expect: mandated disclosures only
occurred at one fifth of state’s general aviation facilities. In columns (2) and (3), I present results
from the triple difference analyses, looking more specifically for price reactions near airports where
residents received information about their potential exposure to lead hazards. Interestingly, even
these results find little evidence that this new information affected housing prices. Any price drop
accruing to properties within 1km of an airport that provided local disclosure is small: point
estimates are less than one percent and not statistically significant. Decomposing this further in
column (3), there is also no evidence of an effect at airports where disclosure occurred and emission
levels are high.

Overall, I find little evidence that this litigation-generated disclosure mandate affected local
housing prices. This is an interesting result in contrast to previous findings that show environ-
mental information disclosure is an effective driver of housing prices (Pope, 2008a; Pope, 2008b;
Frondel, 2020). The nuance in this case could be that disclosure was a one time event: current
residents directly received information about the hazard, but do not have incentive to forward this
information to future buyers. Such a story would align with the information asymmetry narrative
that motivates the aforementioned literature on property-level disclosure. Moreover, my results
accord with previous research demonstrating that warnings related to Proposition 65 are often ig-
nored by California consumers, perhaps due to conditioning from the sheer abundance of product

warnings related to this law (Robinson et al, 2019).

4.6 What can be said about longer term price trends?

As a supplemental analysis, in this subsection I summarize airport-level price evolutions over the
entire 2008-2015 period. While my quasi-experimental empirical designs in sections 4.1-4.4 were
based on short-run price responses to new information, it is possible that information about airborne
lead risk accumulated in the public’s mind over the entire period, resulting in a slow, longer-run
price decline for properties in immediate proximity to airports. Using a slightly modified empirical
approach, I investigate this potential channel here.

I estimate models of a hedonic nature, using all data from the period 2008—2015.@ I estimate

a linear regression of the form

Iog(Price)ijt =a; + ,BjDiSti + ’)/jDiSti Xt+7+ iji + €ijt (2)

2n Figure g, I plot the event study analogue to the column (3) results. Results are noisy, but confirm a flat price
trajectory for sales of homes within 1km of airports included in the settlement.

22For completeness: my estimation sample here consists of all transactions (1) where housing structure character-
istics are available and (2) at airports with >100 observations over the time period and at least 5 sales occurring in
all 3 distance bins.
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and am interested in the resulting distribution of parameter estimates (5; and v;. Note that I
estimate separate hedonic price functions (8;, v;, p;) for each airport, but include homogeneous
year and month fixed effects that capture temporal patterns assumed uniform across all housing
markets in the US. Sales prices are adjusted for annual inflation using a national CPI.

These regressions result in a set of airport-level, initial distance-bin differentials 8;. These
estimates capture average log-price differences for (year) 2008 transactions on properties <lkm or
1-3km from an airport, relative to the base level for properties at a 3-5km distance. Results from
Sections 4.1-4.4 generally confirm that properties at closer distances to a neighboring airport sell
at a relative discount, so I expect the distribution of my f; estimates to tell a similar story.

Similarly, 7; is a set of estimates describing differential time trends by distance bin at each
airport. ; can be roughly interpreted as an annual percent deviation for properties <lkm or 1-
3km from a given airport, relative to the base group’s annual trend. In this case, forming a prior on
the mean and shape of the resulting estimates’ distribution is less straightforward. If information
about potential lead exposure and associated health risks near general aviation airports has worked
its way into public knowledge, then annual price trends in the immediate vicinity of airports could
be relatively diminished compared to those further away.

The resulting distributions of 3; and «; estimates are visualized in . In Panel (a), the
density plots for BA] are normal in shape, with a median value of -0.036 for transactions within 1km
of an airport and a median value of -0.016 for transactions 1-3 km from an airport. These results
are consistent with my previous results, though the visualization of the distribution makes clear
there is some heterogeneity across airports. In Panel (b), I show the analogous density plots for ;.
Interestingly, I find the median trend estimate to be close to zero for both distance groups. This
result does not lend much support to the notion that the general public became increasingly aware
of potential lead risks near general aviation airports over the studied time period.

I take the latter result one step further, however, and examine whether several factors may be

driving this price trend heterogeneity. I estimate a simple descriptive regression of the form:

3; = 6o + 61(ATot. FC);+02(APEA FC); + 03(APb emissions);+

(3)
04(Monitored;) + 05(CEH airport;) + ¢,

61 and 0 describe the relationship between ¥; and the percentage change in total flights and PEA
flights, respectively, at airport j from 2008 to 2015. 63 describes its correlation with the percent
change in lead emissions at airport j reported from 2008 to 2014. 64 and 65 are coeflicients on
indicator variables: the former for airports that received EPA lead monitoring in 2013, and the
latter for airports that were parties to CEH’s Proposition 65 litigation.

Results from this decomposition exercise are in . In column (1), I find little statistically
significant evidence that any of the aforementioned factors are strongly correlated with the differ-
ential price trends for homes within 1km of an airport. Nevertheless, one estimate that does stand
out is the value associated with airport monitoring. Despite the large standard errors, price declines

over time for transactions within 1km of these particular airports are markedly stronger. This result
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is intriguing, as the associated release of monitoring results was the only information treatment
that I found generated a robust price response. I compare this finding with those from Column (2),
which examines differential price trends for homes 1-3km from the airport. None of these factors
show any clear statistical relationship, with point estimates that are economically small as well.
The overall conclusion I draw from this exercise is that any longer-run price responses to changes
in local aviation traffic or estimated lead emissions did not vary much by distance. The factor
that seems most likely to have contributed to longer-run differential price trends is airport-level air

quality monitoring by the EPA.

5 Who lives by airports and does new information change this?

Taken as a whole, the results from Section 4 suggest that exposure to potentially dangerous levels of
airborne lead pollution is concerning to homeowners, but that such information is rarely salient. As
discussed more generally in recent theoretical work by Hausman and Stolper (2020), the incomplete
information problem that exists in this context may present an especially pernicious market failure.
If there is household-level, income-based residential sorting towards or away from airports based on
noise — an obvious disamenity in neighboring areas that is highly correlated with aviation-generated
air pollution — then lower-income households may suffer greater welfare losses from the hidden air
toxicity.@ Indeed, previous social science research has confirmed a robust correlation between lower
socioeconomic status and increased residential exposure to aviation noise; see Collins et al (2020)
and Sobotta et al (2007) for overviews.

To better understand who is most affected by airport-generated lead pollution, I investigate
two environmental justice hypotheses in this section. First, I analyze correlations in neighborhood-
level demographics around airports during the limited information period of 2009-2013, searching
for evidence of disproportionate exposure to airport-generated lead pollution. Second, I test the
“coming-to-the-nuisance” story by leveraging the EPA’s 2013 monitoring results release as an in-

formation shock that could potentially shift neighborhood sorting patterns.

5.1 Disproportionate exposure

A recent EPA report studying potential avgas-generated lead exposure in the US estimates the
national population count residing or attending schools within 500 meters of an airport at just
under 5.2 millions individuals (EPA, 2020).@ With census block level counts from the 2010 Cen-
sus, they show in aggregate that proportions of racial minorities and children under five living or

attending school within this radius are essentially identical to national averages.@ This EPA report

23@Given that lead is a highly toxic chemical that retards childhood social and behavioral development, hindered
intergenerational mobility may be a natural ramification of the spatial equilibrium that results from the hidden
pollution exposure.

24 An earlier 2010 EPA analysis, using Census data from the year 2000, estimated that 16 million individuals reside
and 3 million children attend school within a kilometer of an airport (75 FR 22440).

For example: 7.0% of those living within 500m of an airport are under age 5, while 7.0% of the national
population is under age 5; 20.2% of those in airport-proximity are non-white, while 27.6% of the national population
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describes the racial and age composition of the population that is being exposed to airborne lead
near airports, but in some sense, its findings could result from a ecological fallacy due to its reliance
on national measures. In what follows, I describe a complementary analysis that uses a richer set
of socio-demographic measures, relies on within-airport, distance-based measures of disproportion-
ate exposure, and studies heterogeneity by flight frequency and wind direction. This alternative
approach uses demographic measures from the 2009-2013 ACS at the census block group level -
a slightly larger geographic scale. I focus on this time period as it covers the years directly prior
to release of results from the EPA’s airport monitoring program; in essence, I maintain a view of
this period as one where households still have incomplete information about lead pollution levels
at their local airport.
To study environmental justice correlations in this airport-centered context, I estimate regres-
sions of the form:
Yi;j = a; + BDisty; + €45 (4)

where i indexes block groups, j indexes airports, «; is an airport fixed effect, Dist;; is a set of
distance-to-airport bins (< 1km, 1-3km, 3-5km), and ;; is an error term. Yj;, the dependent
variable in these regressions, is a set of block-group-level demographic measures: median income
(logged), fraction of individuals with household income below 150% of the poverty line, fraction
of adults with less than a high school education, fraction of black residents, fraction of Hispanic
residents, fraction of residents in rented housing, median rent price (logged), median home price
(logged), fraction of residents under 10 years old, and fraction of residents over 59 years old.
The environmental justice literature has found disparate impacts along a number of dimensions,
so I look for correlations in as broad of a sense as the data permits. By using within-airport
variation to estimate my parameters of interest (those on the distance bins) I am asking a slightly
different question than the EPA did in their 2020 analysis: are the demographics of block groups in
immediate proximity to a given airport systematically different from those slightly further away?
Again, provides a representative visual sense of the spatial scale I study.

Panel A of contains results from these exploratory regressions. Note that each column-
by-panel pair represents a separate regression, so this table summarizes coefficients from a total of 30
regressions. In line with results from the EPA’s block-level analysis, these baseline regressions using
within-airport demographic variation find relatively limited support for claims of environmental
injustice. I do find that Hispanics, less-educated adults, and children make up a statistically
larger fraction of the population in the immediate vicinity of airports, though the magnitudes of
these differences is economically small (1.5%, 1.0% and 0.4%, respectively, relative to the baseline
demographics at a distance of 3-5km.) I also find that older adults are less likely to live nearby,
and reassuringly, that an increasing price gradient along distance bins confirms the pattern from
my analysis with the Zillow data. I find no statistical evidence of distance-driven differences in

measures related to income, rent, or the fraction of black population.

is non-white; 38% of students attending school within 500m of an airport are non-white, while 46.7% of students
nationally are non-white.
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In Panels B and C, I estimate similar correlative regressions, but incorporate interaction terms
to allow for heterogeneity by flight counts and wind direction. In Panel B, I allow parameters on
the distance bins to vary by airport based on whether its PEA flight count in 2009-2013 was above
or below the national median. This analysis accentuates findings from Panel A: any statistically
significant evidence of potential environmental injustice remains economically small and is occurring
largely at airport facilities with higher levels of PEA traffic.

Finally, in Panel C, I look for differential correlations based on whether or not a block group
receives wind coming from the direction of a nearby airport more than 30% of the time.@ Being
most frequently downwind of airports, residents in these block groups will bear the heaviest brunt
of local pollution exposure. Results from this model are striking: block groups within 1km of an
airport that receive heavy wind have 9% lower median incomes and have a roughly 3% higher
black population than less wind-frequent block groups in the same distance category. Furthermore,
though the differences are smaller and not statistically significant, similar patterns hold for measures
including the fraction of the population that is Hispanic, the population fraction living under 150%
of the poverty line, population fraction with less than a high school education, as well as the fraction
living in rented housing and the median rental price.

The regression results in this panel do raise potential environmental justice concerns: after
simply accounting for wind’s ability to deliver pollution unevenly over space, there is some evidence
that lower income and minority populations are burdened with relatively higher lead pollution from
airports. This finding is consistent with work in other contexts that has highlighted the importance
of using wind patterns to delineate true exposure (Grainger and Ruangmas, 2018; Hernandez-Cortes
and Meng, 2020). It also accords with Stolper and Hausman’s information and EJ narrative. Since
runways are directionally sited based on prevailing wind patterns and airport noise is heaviest
directly under flightpaths, the results in Panel C suggest that an environmentally unjust outcome

on the margin of air pollution exposure could be resulting from sorting due to noise.

5.2 Coming to the nuisance

Next, I turn to an investigation of whether and how neighborhoods changed following the infor-
mation disclosure rendered by the mid-2013 release of EPA airport lead monitoring results. In
Section 4.3, I found that local property markets did capitalize information about ambient air qual-
ity violations reported during this release; though this price effect was short-term, I explore in this
section whether the new information about local air quality resulted in any longer-run shifts in
local demographic characteristics.

The econometric model I estimate is a parsimonious long-difference analogue of Equation (4):

AY;']' =ao; + ,BDiStZ'j + €5 (5)

26 A block group that receives wind 30% of the time is at approximately the 90th percentile of all block groups in
terms of wind frequency.

20



Here, AY;; = Yj;2018—Yij,2013, S0 this regression’s dependent variable is the change in a block group’s
demographic characteristics from the 2009-2013 ACS sample to the 2014-2018 ACS sample. I am
interested in the coefficients, 3, looking for potentially differential changes by distance-to-airport
bin. Again, these regressions include airport fixed effects, so the variation used to identify 8 comes
from distance-based differences in demographic change within a given airport. Given the larger
scope for potential confounding factors in a regression studying longer-run change, I characterize
these coeflicient estimates as descriptive rather than causal.

Estimation results from regressions of the form described in Equation (5) are presented in
Panel A of . As perhaps expected, these results do not illustrate any meaningful differences
in average demographic changes across distance bins. But I do expect there to be meaningful
heterogeneity hiding behind these baseline, average results. I attempt to tease it out in two ways.
First, in Panel B, I again interact the distance bins with an indicator for block groups that receive
wind more than 30% of the time from the direction of the nearest airport. These results also show
essentially null effects across demographic indicators: block groups strongly downwind of airports
do not demonstrate significantly different sorting patterns.

Finally, in Panel C, I interact the distance bins with the set of airport-level monitoring indicators
from Equation (1.3): ineligible and unmonitored, eligible and unmonitored, monitored and found
in compliance, or monitored and found in violation. This regression should provide the clearest
insight into whether nuisance-based sorting occurred after airport-specific information was shared
with the public. In particular, since I found a short-run sales price effect at airports in violation
of the NAAQS, it seems that information about lead risks was most salient in those two locales.
Before reporting results, a caveat is in order: a total of only 5 block groups fall within one kilometer
of the two airports that were found to be in violation during monitoring. As such, a small sample
disclaimer must apply to this subset of estimates.

The key statistically significant results imply the following: a relative decline (2.3%) in the
fraction of the local population under age 10 living within 1km of airports found in violation;
sizable changes in the renter/owner composition of these neighborhoods in the immediate vicinity
of violations; and large shifts in these neighborhoods’ racial and ethnic compositions. Moreover, the
sign and magnitude of point estimates on neighborhood income and poverty rates also imply sizable
sociodemographic shifts, though they do not meet conventional levels of statistical significance. It
would be naive to claim these demographic shifts result purely from the information shock provided
by airport, but this set of results does accord with my broader findings: if air quality violations
following EPA monitoring makes local lead risk salient to housing markets, temporarily driving
down local sales prices, this could be an initial source of the local population evolution I observe
in the ACS block group level data. While the results in Panel C should be viewed as suggestive in
nature rather than definitive, there does seem to be a sociodemographic response consistent with

the “coming to the nuisance” narrative.@

2"Even if I had a larger sample of block groups falling within one kilometer of the two airports found to have
NAAQS violations, it is impossible to explicitly diagnose whether residential mobility hypotheses apply with this
type of aggregate data. See Depro et al (2015) for related discussion.
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6 Conclusion

This paper documents economic and sociodemographic responses to information shocks about po-
tential lead exposure near hundreds of US general aviation airports. I estimate the causal impact of
new air quality information on local housing prices, and find that ambient lead pollution is rarely
salient to homebuyers. Several types of information about potential health risks from lead do not
drive prices. However, when monitoring shows an airport to be in violation of the EPA’s lead
NAAQS, I do find a strong short run price decline for properties within 1km of the facility. I also
study the demographic compositions of populations living in proximity to these airports, and how
these compositions change with new information on potential lead exposure. I find that populations
living within 1km and downwind of airports are relatively poorer than neighboring populations,
with less education and a higher probability of being a racial or ethnic minority. Following the
release of airport monitoring results in 2013, I also find suggestive evidence of demographic changes
that are consistent with environmental sorting, including a reduction in children residing within
1km of airports found in violation.

These findings add a new context to the growing set of research exploring when environmental
dis(amenities) are and are not salient to local residents. Moreover, the results largely align with
and provide empirical support for a limited information channel acting as an underlying driver of
environmental injustice. From a policy perspective, given the estimated benefits of a hypothetical
reduction in lead from piston-engine aircraft traﬂic@ and the potential for environmental sorting
to be welfare improving in the absence of stricter regulation, my empirical findings highlight the
importance of proactive monitoring and information disclosure when revising environmental policy -

especially when a particular pollutant’s levels or potential for health risk is not salient to consumers.

28Both Wolfe et al (2016) and Zahran et al (2017) value the potential human capital benefits on the order of $1
billion annually.
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Figure 1: Map of US airports with estimated total Pb emissions greater than 0.5 tons in 2008; Red circles denote airports’
whose housing markets are included in my analysis; black crosses denote those omitted due to data limitations.



33.825

33.800

Latitude

33.775

-118.375 -118.350 -118.325 -118.300
Longitude

Figure 2: Representative airport-level property transaction sample: all qualifying sales
transactions that occurred within 5 kilometers of Zamperini Field, in Los Angeles

county, California.
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Figure 4: Event study timeline: four information releases from 2008-2015, with studies

focused on one-year windows surrounding the event date. (Attribution: Figure adapted
from R code by Ed Rubin.)
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Figure 6: Event study, 2010 revision to airport monitoring protocols (Event 2). Bold
line is local polynomial estimate of price residuals over time. Residual price is con-
ditional on airport and month fixed effects, state-specific time trends, and housing
structure controls. Confidence interval is shaded area around line.
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Figure 9: Summary of key parameter results (3;, v;) from estimation of equation 1.5.
Base distance bin is 3-bkm; estimates presented are relative to these base levels and

trends.
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Dependent Variable: log(Sale Price)

(1) (2) (3) (4)

Dist: <lkm -0.062***  -0.040"**  -0.092***  -0.052""
(0.015) (0.012) (0.029) (0.025)

Dist: 1-3km -0.021** -0.018* -0.024 -0.007
(0.009) (0.008) (0.016) (0.014)
Post -0.061***  -0.058"**  -0.073"**  -0.104™**
(0.010)  (0.010)  (0.018)  (0.019)

Dist: <lkm x Post -0.014 -0.028"* -0.008 -0.026
(0.013) (0.013) (0.026) (0.024)

Dist: 1-3km X Post -0.009 -0.014 -0.002 -0.001
(0.009) (0.009) (0.016) (0.019)

% PEA flights: 2nd quartile x Post 0.027 0.004
(0.027)  (0.027)

% PEA flights: 3rd quartile x Post 0.017 0.012
(0.023) (0.022)

% PEA flights: top quartile x Post 0.010 -0.002
(0.021)  (0.022)

Dist: <lkm x % PEA flights: 2nd quartile x Post -0.021 -0.014
(0.039)  (0.038)

Dist: 1-3km x % PEA flights: 2nd quartile x Post -0.017 -0.027
(0.027) (0.026)

Dist: <lkm x % PEA flights: 3rd quartile x Post -0.001 0.007
(0.035) (0.029)

Dist: 1-3km x % PEA flights: 3rd quartile x Post 0.006 -0.018
(0.025)  (0.023)

Dist: <lkm x % PEA flights: top quartile x Post -0.003 -0.003
(0.035) (0.031)

Dist: 1-3km x % PEA flights: top quartile x Post -0.020 -0.015

(0.021)  (0.023)

Fized-effects:

Month Yes Yes Yes Yes
Airport Yes Yes Yes Yes
Varying Slopes:

State: time trends Yes Yes Yes Yes
Airport: housing structure chars Yes Yes

Regression details:

Airports (clusters) 1,049 763 1,049 763
Observations 1,088,674 632,800 1,088,674 632,800
Adjusted R? 0.4196 0.6398 0.4197 0.6399

Standard-errors are cluster-robust at airport level.
Base group for distance indicators is 3-5km. Base group for % PEA flights is the bottom quartile.
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Table 1: Diff-in-diff results, 2008 revision to lead NAAQS.
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Dependent Variable:

log(Sale Price)

(1) (2) (3) (4)
Dist: <1lkm -0.071**  -0.056***  -0.069***  -0.053***
(0.023) (0.018) (0.024) (0.018)
Dist: 1-3km -0.025** -0.018* -0.025** -0.018*
(0.012) (0.010) (0.012) (0.010)
Post -0.049 -0.031 -0.049 -0.061***
(0.033) (0.042) (0.033) (0.016)
Dist: <lkm x Post -0.014 -0.008 -0.014 -0.009
(0.021) (0.017) (0.022) (0.018)
Dist: 1-3km x Post -0.008 -0.008 -0.009 -0.008
(0.011) (0.009) (0.011) (0.010)
Eligible for monitoring study x Post -0.0004 0.004
(0.029) (0.029)
Dist: <1km x Eligible for monitoring study x Post 0.017 0.037
(0.055) (0.055)
Dist: 1-3km x Eligible for monitoring study x Post 0.021 -0.003
(0.026) (0.014)
Fized-effects
Month Yes Yes Yes Yes
Airport Yes Yes Yes Yes
Varying Slopes:
State: time trends Yes Yes Yes Yes
Airport: housing structure chars Yes Yes
Regression details:
Airports (clusters) 1,059 776 1,059 776
Observations 1,074,157 630,596 1,074,157 630,596
Adjusted R? 0.3895 0.6372 0.3896 0.6366

Standard-errors are cluster-robust at airport level.
Base group for distance indicators is 3-5km.
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Table 2: Diff-in-diff results, 2010 revision to airport monitoring protocols.
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Dependent Variable: log(Sale Price)

(1) (2) (3) (4)
Dist: <1lkm -0.100***  -0.065***  -0.087*** -0.058**
(0.021)  (0.016)  (0.022) (0.017)
Dist: 1-3km -0.042***  -0.033***  -0.032*** -0.029***
(0.012) (0.010) (0.012) (0.010)
Post 0.005 0.011 0.007 0.012
(0.014) (0.013) (0.014) (0.013)
Dist: <1km x Post 0.008 0.009 0.002 0.006
(0.012)  (0.011)  (0.014) (0.012)
Dist: 1-3km x Post 0.005 0.008 0.002 0.009
(0.008) (0.007) (0.008) (0.007)
Unmonitored, >= 0.5 tons Pb x Post -0.010 -0.004
(0.021) (0.021)
Monitored: compliant x Post -0.006 -0.009
(0.031) (0.034)
Monitored: violation x Post -0.061*** -0.038***
(0.011) (0.010)
Dist: <1km x Unmonitored, >= 0.5 tons Pb x Post 0.052 0.015
(0.043) (0.024)
Dist: 1-3km x Unmonitored, >= 0.5 tons Pb x Post 0.033 0.003
(0.020) (0.021)
Dist: <1km x Monitored: compliant x Post 0.026 0.015
(0.035) (0.034)
Dist: 1-3km x Monitored: compliant x Post -0.009 -0.017
(0.060) (0.062)
Dist: <1km x Monitored: violation x Post -0.095** -0.097***
(0.044) (0.035)
Dist: 1-3km x Monitored: violation x Post 0.011 0.012
(0.009) (0.008)
Fized-effects
Month Yes Yes Yes Yes
Airport Yes Yes Yes Yes
Varying Slopes:
State: time trends Yes Yes Yes Yes
Airport: housing structure chars Yes Yes
Regression details:
Airports (clusters) 1,067 786 1,067 786
Observations 1,223,585 710,953 1,223,585 710,953
Adjusted R? 0.4151 0.6474 0.4153 0.6475

Standard-errors are cluster-robust at airport level.
Base group for distance indicators is 3-5km. Base group for monitoring is unmonitored, < 0.5 tons of Pb.
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Table 3: Diff-in-diff results, release of lead monitoring results.
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Dependent Variable:

log(Sale Price)

(1) (2) (3)
Dist: <lkm -0.072***  -0.069***  -0.076***
(0.019)  (0.021)  (0.022)
Dist: 1-3km -0.039*** -0.017 -0.021
(0.014) (0.017) (0.019)
Post -0.003 -0.0003 0.0007
(0.022) (0.021) (0.022)
Dist: <1lkm x Post -0.004 -0.001 -0.0004
(0.014)  (0.022)  (0.024)
Dist: 1-3km x Post 0.011 0.017 0.018
(0.009) (0.013) (0.014)
Included in CEH settlement x Post -0.005
(0.016)
Dist: <lkm x Included in CEH settlement x Post -0.007
(0.024)
Dist: 1-3km X Included in CEH settlement x Post -0.017
(0.015)
Not in settlement, >=0.5 tons Pb annually x Post -0.008
(0.015)
In CEH settlement, <0.5 tons Pb annually x Post -0.006
(0.026)
In CEH settlement, >=0.5 tons Pb annually x Post -0.006
(0.014)
Dist: <1lkm x Not in settlement, >=0.5 tons Pb annually x Post -0.019
(0.024)
Dist: 1-3km x Not in settlement, >=0.5 tons Pb annually x Post -0.008
(0.018)
Dist: <1lkm x In CEH settlement, <0.5 tons Pb annually x Post -0.012
(0.028)
Dist: 1-3km x In CEH settlement, <0.5 tons Pb annually x Post -0.012
(0.018)
Dist: <lkm x In CEH settlement, >=0.5 tons Pb annually x Post -0.002
(0.027)
Dist: 1-3km x In CEH settlement, >=0.5 tons Pb annually x Post -0.026
(0.020)
Fized-effects
Month Yes Yes Yes
Airport Yes Yes Yes
Varying Slopes
State: time trend Yes Yes Yes
Airport: housing structure chars Yes Yes Yes
Regression details
Airports (clusters) 129 129 129
Observations 204,282 204,282 204,282
Adjusted R2 0.6721 0.6724 0.6725

One-way (Airport) standard-errors in parentheses

Base group for distance indicators is 3-5km. Base for CEH is non-settlement, <0.5 tons Pb.

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Table 4: Diff-in-diff results, post-consent judgment information disclosure.

37



Trend parameter (<lkm)

Trend parameter (1-3km)

(1) (2)
(Intercept) 0.0004 -0.0003
(0.004) (0.002)
% Aapog 2015 total flight count 0.0002 0.0002*
(0.0002) (0.0001)
% A2008’2015 PEA ﬂlght count -0.0002* -0.0001
(0.0001) (9.5¢-5)
% A2008’2014 Pb emissions 5.9e-6 -6.3e-6
(7.9¢-5) (5.1e-5)
Monitored airport (0/1) -0.058 -0.004
(0.053) (0.006)
CEH lawsuit airport (0/1) -0.003 0.0007
(0.008) (0.004)

Observations 593 593
Adjusted R? 0.01053 0.00691

Heteroskedasticity-robust standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Table 5: Decomposition of longer-run price trends — an examination of potential factors

contributing to heterogeneity
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(1) ) 3) @ (6) " ® () (10)
Dependent variable: Income Pov. Line <HS educ. Black Hispanic Rent/Own Rent Price Age:<10 Age:>59
Panel A: baseline
Dist: 1-3km -0.0009 -0.0008 0.003 -0.003 0.007* 0.002 -0.004 -0.010  0.003*** -0.005***
(0.008) (0.002) (0.003) (0.003)  (0.004) (0.005) (0.004)  (0.008)  (0.0009)  (0.002)
Dist: <1km -0.012 -0.002 0.010** -0.002  0.015** 0.005 -0.004 -0.066*** 0.004*** -0.010***
(0.013) (0.005) (0.005) (0.005)  (0.007) (0.008) (0.007)  (0.015) (0.002) (0.003)
Airports included: 1001
Observations 36,934 37,086 37,077 37,086 37,086 36,990 31,971 35,531 37,086 37,086
Adjusted R? 0.352 0.222 0.333 0.534 0.613 0.169 0.463 0.628 0.108 0.187
Panel B: het. by flight counts
Dist: 1-3km -0.015 0.003 0.007 -0.004 0.002 0.008 -0.009 -0.020 0.003 -0.003
(0.014) (0.005) (0.005) (0.005)  (0.008) (0.009) (0.008)  (0.012) (0.002) (0.003)
Dist: <lkm -0.002 -0.005 0.006 -0.002 -0.006 -0.013 -0.012  -0.035* 0.002 0.003
(0.019) (0.006) (0.007) (0.010)  (0.010) (0.012) (0.014)  (0.020) (0.003) (0.005)
Dist: 1-3km x Heavy PEA traffic 0.018 -0.005 -0.005 0.0009 0.007 -0.007 0.008 0.013 0.0007 -0.003
(0.017)  (0.005) (0.006)  (0.007) (0.010)  (0.010)  (0.010) (0.015)  (0.002)  (0.003)
Dist: <lkm x Heavy PEA traffic -0.014 0.004 0.005 -0.0002 0.028** 0.024 0.010 -0.041 0.003  -0.017***
(0.025) (0.008) (0.009) (0.012)  (0.013) (0.015) (0.016)  (0.027) (0.004) (0.006)
Airports included: 1001
Observations 36,934 37,086 37,077 37,086 37,086 36,990 31,971 35,631 37,086 37,086
Adjusted R? 0.352 0.222 0.333 0.533 0.613 0.169 0.463 0.628 0.108 0.188
Panel C: het. by wind frequency
Dist: 1-3km -0.001 0.0001 0.005 -0.004  0.011** 0.004 -0.003 -0.009  0.004*** -0.005***
(0.009)  (0.003) (0.003)  (0.004) (0.005)  (0.005)  (0.005) (0.009)  (0.001)  (0.002)
Dist: <lkm -0.009 -0.002 0.010* -0.004  0.020** 0.008 -0.006 -0.070***  0.004** -0.011***
(0.015) (0.005) (0.005) (0.006)  (0.008) (0.009) (0.008)  (0.017) (0.002) (0.003)
>30% wind direction 0.019 -0.012 -0.006 -0.016 0.015 -0.008 -0.009 0.059 0.003 0.003
(0.047) (0.015) (0.018) (0.016)  (0.026) (0.024) (0.023)  (0.042) (0.004) (0.007)
Dist: 1-3km X >30% wind direction  -0.066* 0.016 0.0006 0.022* -0.009 0.026 -0.017  -0.087** -0.005 -0.003
(0.038) (0.011) (0.013) (0.012)  (0.017) (0.024) (0.021)  (0.039) (0.004) (0.008)
Dist: <1lkm x >30% wind direction -0.123** 0.027 0.023 0.043** -0.002 0.039 -0.048 -0.044 -0.004 0.010
(0.059) (0.018) (0.020) (0.020)  (0.028) (0.034) (0.035)  (0.055) (0.008) (0.014)
Airports included: 710
Observations 30,495 30,627 30,618 30,627 30,627 30,544 26,612 29,228 30,627 30,627
Adjusted R? 0.336 0.207 0.314 0.531 0.611 0.156 0.462 0.635 0.097 0.157

Notes: Observations are at census block-group level. Standard errors are clustered by airport, with airport FEs included in all specifications.
Description of dependent variables: (1) log(median income), (2) % living w/ income <150% poverty line, (3) % w/ less than HS education,

(4) % Black residents, (5) % Hispanic residents, (6) % of residents renting housing, (7) log(median rent price), (8) log(median home price),

(9) % of residents under 10 years old, (10) % of residents over 59 years old.
Description of independent variables: Base group for distance indicators is 3-5km. Heavy PEA indicates airports above the national median
during the 2009-13 period. Wind direction indicates all block groups that receive wind in their compass octant more than 30% of the time.

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Table 6: Environmental justice in neighborhoods near US airports.
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(1) 2) 3) ) B) (6) M ® (10)
Dep. variable: (A2018,2013) Income Pov. Line <HS educ. Black Hispanic Rent/Own  Rent Price  Age:<10 Age:>59
Panel A: baseline
Dist: 1-3km 0.0003  -0.0001 -0.0009 0.001 -0.0006 0.0004 0.0001  -0.002  -0.0010 0.001
(0.003) (0.001) (0.001) (0.001) (0.001) (0.001) (0.003) (0.003) (0.0008) (0.0009)
Dist: <1km -0.006 -0.0001 -0.002 -0.0010 0.003 0.001 -0.004 -0.001  -0.002* 0.001
(0.006) (0.003) (0.002) (0.002) (0.003) (0.003) (0.005) (0.006)  (0.001) (0.002)
Airports included: 1001
Observations 35,928 37,071 37,055 37,071 37,071 36,964 29,662 34,127 37,071 37,071
Adjusted R2 0.022 0.005 0.009 0.002 0.008 0.009 0.046 0.253 -0.0007 0.003
Panel B: het. by wind direction
Dist: 1-3km -0.0001 0.0002 -0.001 0.002 -0.0010 0.0000 -0.003  -0.002 -0.001 0.001
(0.004) (0.002) (0.001) (0.001) (0.001) (0.002) (0.003) (0.003) (0.0009) (0.001)
Dist: <1km -0.010 -0.0001 -0.003 -0.0003 0.002 -0.0005 -0.004 -0.004 -0.003* 0.002
(0.007) (0.003) (0.002) (0.002) (0.003) (0.003) (0.006) (0.007)  (0.002) (0.002)
Dist: 1-3km x >30% wind direction -0.002 -0.013 0.004 -0.003 -0.007 -0.0009 -0.002  0.020 -0.002 0.009
(0.020) (0.008) (0.005) (0.005) (0.009) (0.009) (0.014) (0.020)  (0.004) (0.006)
Dist: <lkm x >30% wind direction 0.013 0.010 0.012 -0.010 0.001 0.006 0.011  -0.0004 0.010 -0.017*
(0.030) (0.015) (0.010) (0.010) (0.012) (0.016) (0.021) (0.025)  (0.007) (0.009)
Airports included: 710
Observations 29,624 30,613 30,597 30,613 30,613 30,520 24,727 28,012 30,613 30,613
Adjusted R2 0.023 0.004 0.011 0.003 0.008 0.009 0.049 0.250 -0.0005 0.0009
Panel C: het. by info release
Dist: 1-3km 0.0004 0.0001 -0.0006 0.0006 -0.0002 -0.0003 -0.0006 -0.0010 -0.0008 0.001
(0.003) (0.002) (0.001) (0.001) (0.001) (0.001) (0.003) (0.003) (0.0009) (0.0010)
Dist: <1km -0.007 -0.0004 -0.002 -0.001 0.004 0.001 -0.004 -0.004 -0.003** 0.001
(0.007)  (0.003) (0.002)  (0.002)  (0.003)  (0.003)  (0.005) (0.006) (0.002)  (0.002)
Dist: 1-3km x Unmonitored, >=0.5 tons Pb -0.0007  -0.0006 -0.003 0.003 0.0008 0.004 0.007  -0.005 -0.003 0.002
(0.013) (0.005) (0.004) (0.005) (0.005) (0.005) (0.010) (0.012)  (0.003) (0.003)
Dist: <lkm x Unmonitored, >=0.5 tons Pb  0.015 0.003 -0.003 0.002 -0.013 -0.010 0.001 0.013 0.005 0.006
(0.025) (0.015) (0.010) (0.008) (0.009) (0.008) (0.023) (0.021)  (0.005) (0.008)
Dist: 1-3km x Monitored: violation 0.007 -0.0008 -0.009** -0.001  -0.022*** 0.005 0.060** -0.012 -0.010 -0.004
(0.074) (0.004) (0.004) (0.003) (0.001) (0.009) (0.027) (0.017) (0.011) (0.003)
Dist: <1km X Monitored: violation -0.082 0.031 0.007 0.070***  -0.089* -0.062*** 0.152 -0.051 -0.023*** 0.026
(0.086) (0.041) (0.060) (0.019) (0.048) (0.006) (0.145) (0.060)  (0.007) (0.025)
Dist: 1-3km x Monitored: compliant -0.002 -0.005 -0.003 0.006 -0.011* 0.010 -0.0001 -0.010 0.002 -0.004
(0.023) (0.012) (0.004) (0.006) (0.006) (0.010) (0.013) (0.015)  (0.005) (0.003)
Dist: <1lkm X Monitored: compliant 0.001 0.004 0.006 0.007 -0.006 0.020* -0.005  0.038 0.013** -0.007
(0.029) (0.019) (0.008) (0.008) (0.012) (0.011) (0.024) (0.041)  (0.006) (0.007)
Airports included: 1001
Observations 35,928 37,071 37,055 37,071 37,071 36,964 29,662 34,127 37,071 37,071
Adjusted R2 0.022 0.005 0.008 0.002 0.008 0.009 0.045 0.253 -0.0007 0.002

Notes: Observations are at census block-group level. Standard errors are clustered by airport, with airport FEs included in all specifications.
Description of dependent variables: all are first-differences of 2014-18 & 2009-13 5-year ACS measures. (1) log(median income), (2) % living w/ income
<150% poverty line, (3) % w/ less than HS education,(4) % Black residents, (5) % Hispanic residents, (6) % of residents renting housing,
(7) log(median rent price), (8) log(median home price), (9) % of residents under 10 years old, (10) % of residents over 59 years old.
Description of independent variables: Base group for distance indicators is 3-5km. Wind direction indicates all block groups that receive wind

in their compass octant more than 30% of the time. Base group for info treatment is unmonitored, < 0.5 tons Pb.
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Table 7: Neighborhood demographic changes following airport monitoring results.



Appendix

Variable Mean Std. Dev. Minimum Median Maximum Obs. Count
Distance: 3000-5000m
Sales Price 717150.42 618378.45 10000 562750 9263592 9916
Construction Year 1970.58 20.25 1891 1971 2016 9898
Total Bedrooms 3.03 1.02 1 3 8 9858
Total Baths 2.47 1.02 1 2 10 9895
Acreage 1.49 2.52 0.01 0.22 17.3 9916
Direct Flight-path (dummy) 0.12 0.33 0 0 1 9916
Distance: 1000-3000m
Sales Price 671187.27 447525.73 11000 579000 8550000 7569
Construction Year 1971.49 21.71 1908 1964 2016 7563
Total Bedrooms 3.04 0.94 1 3 7 7523
Total Baths 2.43 0.88 1 2 9 7562
Acreage 1.1 1.95 0.03 0.2 11.13 7569
Direct Flight-path (dummy) 0.11 0.31 0 0 1 7569
Distance: <1000m
Sales Price 602864.93 244572.23 35000 593000 2387772 1084
Construction Year 1966.2 20.24 1911 1963 2016 1083
Total Bedrooms 3.03 1.02 1 3 8 1083
Total Baths 2.33 0.92 1 2 8 1083
Acreage 0.75 1.77 0.05 0.15 7.49 1084
Direct Flight-path (dummy) 0.12 0.32 0 0 1 1084

Table Al: Summary statistics for sales transactions data (2007-2016). Observations
include all properties located within 5km of Zamperini Field (TOA).
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Variable Mean Std. Dev. Minimum Median Maximum Obs. Count
Distance: 3000-5000m

Median Income 86578.4 35938.2 28017 86042 207031 81
Frac. below 150% pov. line 0.11 0.11 0 0.07 0.5 81
Frac. less than H.S. educ. 0.1 0.12 0 0.05 0.43 81
Frac. Black 0.06 0.07 0 0.03 0.37 81
Frac. Hispanic 0.25 0.22 0 0.17 0.9 81
Frac. Renters 0.4 0.28 0 0.36 1 81
Median Rent 1489.33 395.52 578 1580 2001 67
Median Home Price 620079.84 250802.47 58000 636900 1000001 79
Frac. under age 10 0.12 0.05 0.02 0.11 0.27 81
Frac. over age 59 0.21 0.09 0.05 0.21 0.46 81
Population 1787.27 834.99 419 1668 3903 81
Distance: 1000-3000m
Median Income 85592.59  33137.28 30875 81354 168438 59
Frac. below 150% Pov. Line 0.12 0.12 0 0.09 0.54 59
Frac. less than H.S. educ. 0.11 0.12 0 0.07 0.64 59
Frac. Black 0.04 0.06 0 0.02 0.33 59
Frac. Hispanic 0.25 0.22 0 0.17 0.86 59
Frac. Renters 0.35 0.24 0 0.29 0.93 59
Median Rent 1478.81 396.59 567 1407 2001 53
Median Home Price 612810.61 206196.49 14600 620100 1000001 57
Frac. under age 10 0.12 0.05 0.02 0.11 0.23 59
Frac. over age 59 0.21 0.08 0.05 0.2 0.46 59
Population 1606.46 815.19 520 1332 3506 59
Distance: <1000m
Median Income 67298.46  17290.49 46250 65223 108804 13
Frac. below 150% Pov. Line 0.15 0.13 0.01 0.11 0.44 13
Frac. less than H.S. educ. 0.06 0.04 0.01 0.05 0.13 13
Frac. Black 0.02 0.02 0 0.02 0.07 13
Frac. Hispanic 0.2 0.17 0.05 0.13 0.57 13
Frac. Renters 0.51 0.21 0.17 0.54 0.89 13
Median Rent 1426.62 333.8 765 1359 2001 13
Median Home Price 554330.77 165911.49 208300 592000 763500 13
Frac. under age 10 0.12 0.07 0 0.11 0.23 13
Frac. over age 59 0.21 0.13 0.08 0.21 0.56 13
Population 1593.08 771.29 683 1259 3311 13

Table A2: Summary statistics for 2009-2013 ACS demographic data. Observations are
block groups within 5km of Zamperini Field (TOA).
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(1) (2) (3) (4) (5) (6) (8)
FAA LID Name State Total flights (°07-’16) PEA flights (’07-’16) Pb Emissions (’08) Pb concentration (’13) Transactions w/in 5km
DVT PHOENIX DEER VALLEY AZ 99, 198 49, 586 1.317 0.04 3,464
FFZ FALCON FLD AZ 49, 846 26,708 1.213 3,312
RVS RICHARD LLOYD JONES JR OK 140,411 76,713 1.174 2,251
DAB DAYTONA BEACH INTL FL 309, 768 159, 831 1.093 3,338
LGB LONG BEACH/DAUGHERTY FIELD CA 527,267 97,490 1.025 7,790
TMB MIAMI EXECUTIVE FL 223,973 116,670 1.025 7,674
CHD CHANDLER MUNI AZ 30, 809 16, 743 0.917 5,267
PRC ERNEST A LOVE FIELD AZ 71,428 25,350 0.904 115
SEE GILLESPIE FIELD CA 69, 169 39,656 0.900 0.07 5,090
MYF MONTGOMERY-GIBBS EXECUTIVE CA 187,693 107, 524 0.869 4,112
VNY VAN NUYS CA 583,073 115,706 0.766 0.06 7,216
ACK NANTUCKET MEMORIAL MA 446, 306 240, 568 0.756 0.01 37
APA CENTENNIAL CcO 631, 380 88, 700 0.730 0.02 4,859
SFB ORLANDO SANFORD INTL FL 397,740 207,041 0.716 2,088
RYN RYAN FIELD AZ 15,255 12,291 0.714 794
SNA JOHN WAYNE AIRPORT CA 1,393,016 125, 848 0.712 5,074
FIN FLAGLER EXECUTIVE FL 43,186 31,277 0.712 1,054
EVB NEW SMYRNA BEACH MUNI FL 75,722 63,024 0.685 1,920
HIO PORTLAND-HILLSBORO OR 212,177 89, 650 0.677 2,672
VNC VENICE MUNI FL 59, 634 35,062 0.675 3,512
PAO PALO ALTO CA 73,380 58,634 0.659 1,901
IWA PHOENIX-MESA GATEWAY AZ 191,611 35,218 0.658 0.12 6,536
BFI BOEING FIELD/KING COUNTY INTL WA 703,142 177,338 0.650 5,275
HWO NORTH PERRY FL 41, 336 34,593 0.634 10, 552
52F NORTHWEST RGNL X 8,892 8,326 0.629
LVK LIVERMORE MUNI CA 67,523 33,104 0.624 4,344
VRB VERO BEACH RGNL FL 245,204 155,914 0.624 3,626
MRI MERRILL FIELD AK 19,433 8,203 0.610 0.07
S50 AUBURN MUNI WA 12,007 11,253 0.605 0.06 2,740
PDK DEKALB-PEACHTREE GA 724,995 196, 141 0.597 5,943
GFK GRAND FORKS INTL ND 353, 227 199, 052 0.597
GYR PHOENIX GOODYEAR AZ 20, 563 8,534 0.596 3,084
CRQ MCCLELLAN-PALOMAR CA 309, 144 70, 306 0.595 0.17 4,387
DWH DAVID WAYNE HOOKS MEMORIAL TX 205, 024 99, 858 0.589
PTK OAKLAND COUNTY INTL MI 380, 881 88,947 0.586 0.02 2,781
VGT NORTH LAS VEGAS NV 142,322 74,517 0.584 10, 818
TOA ZAMPERINI FIELD CA 71,107 56,857 0.580 4,895
LNA PALM BEACH COUNTY PARK FL 43,891 38,634 0.577 6, 666
ISM KISSIMMEE GATEWAY FL 179,815 94, 556 0.564 3,227
DMW CARROLL COUNTY RGNL MD 33,581 16,278 0.559 850
DCU PRYOR FIELD RGNL AL 30,487 17,207 0.550 0.01 26
SSF STINSON MUNI TX 38,485 26, 520 0.542 0.03
HWD HAYWARD EXECUTIVE CA 99,178 41,762 0.540 4,673
GXY GREELEY-WELD COUNTY CcO 24,679 8,513 0.535 387
PUB PUEBLO MEMORIAL CcO 108,128 18,625 0.533 352
RHV REID-HILLVIEW CA 35,196 30,614 0.532 0.09 5,403
SQL SAN CARLOS CA 98, 888 46,375 0.530 0.33 3,829
FRG REPUBLIC NY 257,605 64,920 0.527 0.01 2,357
FPR TREASURE COAST INTL FL 210, 060 154,004 0.526 1,109
OMN ORMOND BEACH MUNI FL 50,019 43,739 0.526 1,643
MLB MELBOURNE INTL FL 225,719 121, 444 0.521 4,435
MGJ ORANGE COUNTY NY 14, 502 12,577 0.505 198
S43 HARVEY FIELD WA 3,899 3,757 0.502 0.02 1,075
AEG DOUBLE EAGLE II NM 26,092 13,589 0.500
HWV BROOKHAVEN NY 11, 646 10, 378 0.498 0.03 994

Notes: Characteristic summaries of airports eligible for EPA’s monitoring pilot program following Pb NAAQS revision.
Column descriptions: (4) Total flight operations during 2007-16 period. (FAA TFMS). (5) Piston-engine flight operations during 2007-16 period. (FAA’s TFMS). (6) Estimated Pb
emissions, 2008 (tons, EPA’s NEI). (7) Monitored 3-hr average Pb concentration , 2013 (EPA). (8) Arms-length, price-recorded property transactions w/in 5km of airport during

2-year window surrounding monitoring info release, 2012-2014 (Zillow’s ZTRAX).

Table A3: Airport summary statistics: all airports with estimated 2008 Pb emissions over 0.5 tons.



Name County

Bob Hope Airport Los Angeles
Brackett Field Los Angeles
Brown Field Municpal Airport San Diego
Buchanan Field Contra Costa
Camarillo Airport Ventura
El Monte Airport Los Angeles
Fresno Yosemite International Airport Fresno
Hayward Executive Alameda
John Wayne Airport Orange
Long Beach Airport Los Angeles
Los Angeles International Airport Los Angeles
Meadows Field Kern
Montgomery Field San Diego
Napa County Airport Napa
Oakland International Airport Alameda
Palo Alto Airport Santa Clara
Reid-Hillview Airport Santa Clara
Sacramento Executive Airport Sacramento
San Luis Obispo County Regional Airport San Luis Obispo
Santa Barbara Municipal Airport Santa Barbara
Santa Monica Municipal Airport Los Angeles
Van Nuys Airport Los Angeles
Zamperini Field Los Angeles

Table A4: Airports included as defendents in CEH avgas lawsuit.
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