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Agricultural and Applied Economics 637 
Applied Econometrics II 

Assignment 2 
Determining Optimal Parameter Values in Nonlinear  

Regression Models:  Two Step and Grid Search Examples 
 

 
Due:  February 20, 2018 
80 Total Pts. 
[Note:  When you are ready to hand-in your assignment, place your code, output 
file(s), etc, in the appropriate Dropbox in the Learn@UW course website.  If your 
output contains a listing of iterative results, edit the output file so only the first and 
last few iterations are shown.  There is no need to show the results of 100’s of 
estimation iterations.] 

As you will discover throughout the semester, unlike estimating parameters of the 
classical regression model (CRM), finding optimal parameters of a nonlinear (in 
parameter) regression model usually requires an iterative search process.  The 
definition of what constitutes optimal obviously depends on the objective function 
used as a guide in determining the preferred parameter values.  For example, are you 
trying to find parameter values that minimize the sum of squared differences between 
predicted and actual dependent variable values (i.e., the sum of squared errors, 
[SSE’s]) or are you trying to find parameter values that maximize the joint probability 
of obtaining the observed dependent variable values (i.e., the dependent variable joint 
probability density function, PDF)? 

As we noted in class and in contrast to the CRM, a nonlinear regression model 
requires you to make an initial guess as to parameter values and then to check to 
determine, if indeed, these parameter values are optimal.  If not optimal then the 
estimation algorithm you are using should have specific procedures for obtaining 
new updated parameter estimates.  This parameter updating is an iterative process 
where for each vector change, the parameters are improved.  Improvement is 
defined relative to changes in the algorithm’s objective function. 
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1. (30 pts) Suppose you have 45 years of data concerning Australian wool 
exports.  The Australian Wool Association (AWA) has provided you 45 
annual time series observations of metric tonnes (1,000’s) of wool exported 
(Wool_Qt), the average marketing year Australian wool export price 
(Wool_Pt) and the average U.S. wholesale price of synthetic fabric (Syn_Pt), 
given that the U.S. is a major manufacturer of synthetic fibers.  Again the 
dependent variable is measured in 1,000 MT and the two price series are 
measured in Australian $ per MT. The wool data is contained in the file 
wool_assign_2_18.xls.  This market data can also be obtained from the data 
section of the class website.   

Assume you want to estimate the following stochastic relationship between 
annual Australian wool exports, its export price and the price of synthetic 
cloth material: 

( )W S Tβ β
t t t

β
0 tSWool_Q yn_P TiWool_P eβ m exp ε=    t=1970,…,2014   (1)  

where β0, βW, βS and βT are coefficients whose values are to be estimated, The 
trend variable, Time =1,…,45, and εt is the error term for the tth observation.  
We include the time trend variable to account for any systematic change in 
wool exports.  For estimation, you use a logrithmic transformation of (1) so 
the 4 parameters can be estimated the CRM with an additive error.  

Since you are using annual data, you suspect that you have an AR(1) error 
structure where εt =ρεt-1 + νt.  The term νt represents an error term where νt ~ 
(0, σ2

ν) (i.e., homoscedastic/non-autocorrelated).  The coefficient ρ quantifies 
the relationship between consecutive error terms.  In addition to the β 
coefficient vector, ρ and its standard error also need to be estimated.   

There are a number of ways to estimate the parameters of (1) while 
recognizing the possibility of an AR(1) error structure.  Remember that the 
presence of autocorrelated errors represents an efficiency issue under CRM 
estimation.  That is, CRM estimated parameters are still unbiased.  In contrast, 
CRM generated standard errors are no longer efficient.  In fact, the parameter 
covariance matrix, Σβ = σ2(X′X)-1 is a biased estimate of this covariance 
matrix when there is error autocorrelation.   

https://aae.wisc.edu/aae637/data/Matlab/wool_assign_2_18.xls
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For a review of the AR(1) error structure and associated parameter estimation 
issues, refer to p. 327-332, Chapter 8, Judge et al (1988), and p. 384-392, 
Chapter 9.  Using this information I would like you to estimate the parameters 
of equation (1) assuming an AR(1) error structure via what is often referred to 
as, the two-step Estimated (Feasible) Generalized Least Squares (EGLS or 
FGLS) estimation procedure.  The general two step procedure to obtain the 
K+1 paramters is outlined in the above pages.    Specifically, check out 
equations [9.5.36] – [9.5.41] in pages 391-392 for an overiewof the estimation 
procedure. For an example two-step alogorithm for parameter estimation with 
AR(1) errors refer to this summary document. 

Instead of developing this estimation using just raw code, you decide you 
want to develop a general AR(1) estimate function that uses the Estimated 
General Least Squares (EGLS) procedure to obtained parameter estimates not 
only for this problem but for any model of any size so long as there is a 
possible AR(1) error structure.  The general flowchart contained in the 
summary document should give you a good idea as to how to organize your 
function.   

You want to design the function such that its incorporation into MATLAB 
code is obtained via something like the following call out to this function 
from a problem specific command file:   

[Est_Betas,Est_rho,VCV,SE_rho]=FI_LI_AR1(Rhsvar,Depend,Int_flag); 

where:  FI = your first initial; 
 LI = your last initial; 

Est_betas = the (K*×1) vector of estimated regression coefficients; 
Est_rho = the estimated value of ρ, the correlation coefficient; 
VCV = the (K* × K*) estimated regression coefficient covariance 

matrix; 
SE_rho = the estimated ρ coefficient standard error; 
Rhsvar = the (T × K*) matrix of exogenous explanatory variables; 
Depend = the (T × 1) vector of dependent variable values; 

Int_flag 
1,if intercept in the model
0,otherwise


= 


; and 

https://aae.wisc.edu/aae637/articles/jhgll_ch8.pdf
https://aae.wisc.edu/aae637/articles/jhgll_ch9.pdf
https://aae.wisc.edu/aae637/assignments/Spring_2018/AR_1_General_Algorithm.pdf
https://aae.wisc.edu/aae637/assignments/Spring_2018/AR_1_General_Algorithm.pdf
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K* = K + Int_flag (i.e., K = the number of exogenous variables in 
eq.1 excluding any intercept);  

Using the notation of Judge et al(1988), the EGLS function (i.e., FI_LI_AR1) 
you develop needs to calculate the (T × T) error covariance matrix, Ψ, 
regardless of the number of observations.  What I have done in the past is to 
some type of for, while, do_until, etc. loop to build this matrix whose 
elements vary depending on the amount of time between two error terms.  

[Hint:  Note the symmetry and time dependent structure of Ψ as shown in 
Judge et al (1988) p.387, eq. 9.5.19,.  Let Ψ* equal the full matrix prior to 
dividing by (1-ρ2), i.e., Ψ = [Ψ*/(1-ρ2)] You only have to build the upper 
triangle portion of Ψ*.   
Let vvv be the upper triangular portion of Ψ* (including a diagonal consisting 
of T ones) and vvvʹ its transpose.  What does (vvv+vvv′) equal?  How can this 
summation be transformed so that it is equal to  Ψ*?   
When developing the code to calculate Ψ* remember the general structure is 
the same for 5 observations as 50 observations so try to first estimate a (5 x 5) 
Ψ* matrix by first developing this code as standalone and assuming a ρ value 
of 0.5.  In the final version the actual value of ρ will be determined by the 
function.] 
 
Remember that under AR(1) unbiased Generalized Least Squares (GLS) 
parameter estimates are obtained via the following:  βG=(X′ΨX)-1X′Ψ-1y.  The 
GLS parameter covariance matrix is obtained from σ2(X′Ψ-1X)-1. 

The FI_LI_AR1 function: 

− Undertake CRM estimation to enable you to estimate ρ as outlined in the 
above AR(1) summary document; 

− Display the typical CRM regression results you displayed in the function 
you created in Assignment #1; 

− Undertake an Estimated Generalized Least Squares regression model 
where you create and save to an output file, a table showing the typical 
regression estimation results similar in form to the results shown for your 
estimation including the ρ coefficient and its standard error. Make sure you 
place column names over the associated column of the regression results 

https://aae.wisc.edu/aae637/assignments/Spring_2018/AR_1_General_Algorithm.pdf
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matrix and you identify the exogenous variable is associated with each 
results matrix row.  

− Provide the R2 and adjusted R2 values for the transformed model used in 
estimation.   

− Show the results of testing the null hypothesis that you indeed have an 
AR1 Error Structure. 
(i) (20 pts) Apply the FI_LI_AR1 function to the estimation of the 

logrithmic transformation of equation (1).  Undertake a formal 
hypothesis test of whether an AR1 error structure exists? 

(ii) (5 pts)  Do the estimated results make sense with respect to the value 
of the own and cross price effects?  That is, are they indivudally: 

a. Statistically significant?   
b. Statistically different from -1.0 and 1.0, respectively? 

(iii) (5 pts)Undertake a test of the following null hypothesis: 
H0:  Wool own-price elasticity = − Wool synthetics-price elasticity 

In answering the above, provide the reason(s) for your answer. 

 

2. (30 pts) As noted in the introduction, when using iterative methods to obtain 
SSE minimization paremeter estimates, if it is determined that the current 
paramater vector estimate does not generate a SSE minimum value, then 
whatver estimation algorithm you are using, it should have specific 
procedures for obtaining new updated parameter estimates.  This parameter 
updating is the iterative process where, for each vector change, parameters are 
adjusted, in a logical manner, to improve the algorithm’s objective function 
across iteration. 

We have started reviewing alternative methods for conducting the above 
iterative process.  One method we will not be reviewing to any large degree is 
what is known as the Grid Search method given its computational 
intensiveness.  For each parameter you divide a reasonable range of values 
into a finite set of discrete values and then evaluate the impact of parameter 
value combinations on the alogorithm’s objective function (e.g.,  the SSE, 
log-likelihood function (LLF), etc).   
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Using the same data as that used in Question 1, assume you want to estimate 
the following relationship between annual Australian wool exports, its export 
price and the price of synthetic cloth material. 

W Sβ
t t tt

βWoo Syn_l_Q Wool_P P  + ε=  t = 1970-2014 (2) 
where t = 1970-2014, the β’s are unknown parameters whose values you are 
trying to estimate and εt is an error term for the tth year where εt~ (0,σ2). Note 
that (2) cannot be linearized with respect to the parameters given the assumed 
error structure.   
 
I would like you to develop a MATLAB function that will determine the 
values of βW and βS that minimize the SSE from predicting Wool_Qt via a 
Grid Search method.  As noted above, under the Grid Search method you use 
a finite number of pre-defined grid points and compare the SSE’s under these 
finite number of candidate parameter combinations. You then choose the 
combination that results in the minimum SSE of those respresented in the 
predefined grid. 

 
When implementing a grid search algorithm, there are several questions that 
need to be addressed: 

− How can I determine reasonable starting values? 
As with all parameter search algorithms, you have to supply the 
estimation system reasonable starting values.  For this problem, eq. 
(1) provides a specification, after omitting the β0, βT and ρ 
parameters, you can use via the CRM, to provide starting values for 
the estimation of eq. (2). 

− What is a reasonable range of parameter values to define the grid? 
There is no specific answer to this question.  Obviously you would 
like to use a range that encompasses the true, but unlnown, parameter 
values for SSE minimization.  If you could linearize the model of 
concern, a possible way to determine this range is to use the 
estimated cofficient standard errors obtained via the linear 
specification.  Of course, the accuracy would depend on that model 
speicifcation changes needed to go from the nonlinear to linear in 
paramaters functions. 

− How wide should I make each cell in the grid? 
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Again, there is no specific answer to this question.  This is a typical 
judgement question that often needs to be answered when estimating 
nonlinear regression models. 

− What value should I assign a parameter for a particular cell? 
The usual procedure is to assign the midpoint of the parameter range 
associated with a particular cell. 

Similar to the AR(1) function you created in Question #1,  you decide to 
create a single function to obtain both (i) starting values from a CRM and (ii) 
undertaking a grid search of parameters under the nonlinear specification.  
This function should print to an output file: (i) each iteration number; (ii) 
associated parameter estimates; and (iii) the resulting SSE value.  At the end 
of the output file you should print the paramater values that provides you the 
smallest SSE and the SSE value. 
 
Finally, the function you develop would be called out by a problem specific 
command file which should look something like the following: 
[Est_Betas, Row_ID, Col_ID,Min_SSE]= 

FI_LI_Grid(LLim, ULim, Num_Rows, Num_Col)  

where:  FI = your first initial 
LI = your last initial 
LLim = the (K×1) vector of lower limits for the K parameters for the 

initial grid search; 
ULim = the (K×1) vector of parameter upper limits for the initial grid 

search; 
Num_Rows = grid rows associated with the 1st parameter;  
Num_Cols = grid columns for the 2nd parameter; 
Est_Betas = the (K×1) vector of estimated parameters; 
Row_ID = row number associated with 1st parameter; 
Col_ID = column number associated with 2nd parameter; and 
Min_SSE = the minimum SSE. 
 

3. (20 pts)  Now lets fine tune your estimation by redoing your grid search 
around the solution obtained in Question #2 above.  That is, given the 
coefficients that you found to generate the minimum SSE in #2 above (i.e. , 
β*

W , β*
S) modify your function such that you undertake another grid search 

with the upper and lower limits of the grid for each iteration are defined by 
ULim_It and Llim_It: 
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t t

ULim for t =1 LLim for t =1
ULim_I LLim_I (3)

ULim_I , t = 2,...,T LLim_I , t = 2,...,T
 

= = 
 

 

The challenge for you is to determine the appropriate ULim_It and ULim_It 
when t=2,…,T.  Obviously, the width of the these limits is based on the 
optimal grid cell width used in the previous iteration. 
 
Once you obtain a new pair of coefficients that generate the smallest SSE 
within this new grid, (which should be no larger than the minimum SSE found 
under the previous grid search) use (3) to define a new grid cell width using 
this new pair of coefficients as the midpoint.  Repeat this process until neither 
of these coefficients change.  What is you definition of no change that can 
used regardless of the SSE units.  Your definition should be some value 
greater than zero.  What criteria did you use?  
 
In summary, we can represent this system expansion via the flowchart shown 
to the right.  You will have one additional 
input when calling out this new function,  
[Est_Betas, Row_ID, Col_ID,Min_SSE] =   
   FI_LI_Grid_V2(LLim, ULim, Num_Rows,  

   Num_Col, Crit_Val) 

where Crit_Val is the criteria value that 
defines whether the coefficients have changed 
however you define this criteria.  For each 
intermediate grid search make sure you print 
out the Intermediate Grid Number, Minimum 
SSE for that grid and Beta vector that 
generated the minimum SSE.  Under this new system, the output Min_SSE is 
the minimum SSE obtained at the end of your iterations. 


