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Agricultural and Applied Economics 637 
Applied Econometrics II 

Assignment IV 
Maximum Likelihood Estimation 

(Due:  April 6, 2018) 
 

In this assignment, I would like you to apply the theoretical Maximum Likelihood material 
to some empirical applications.  Make sure you hand in your MATLAB code and output 
files. 
Total Points:  150 pts. 
1. (50 pts) Let y1, y2,…,yT be a random sample from a population with the following 

PDF:  ( )
y λt

t
t

λ ef y
y !

-
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3,…) .  A variable with this PDF is referred to as having a Poisson distribution.  One 
can show that under this distribution, the mean and variance of this random variable is 
equal to the λ parameter.  The file count_intro.ppt contains a brief overview of what is 
referred to as a Count Data model which is based on the Poisson distribution.  For more 
detail refer to Greene p. 802-809 or Cameron and Trivedi, 665-682.  This modeling 
framework is often used when the dependent variable is a count of the number of times 
a particular event occurs or activity undertaken.  Given the above distribution function, 
the total sample log-likelihood function is: 
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Let’s extend the above model to where we allow the mean and variance of the Poisson 
random variable, λ, to be a function of a set of exogenous variables.  That is, like the 
CRM we would like the mean value of the dependent variable to be conditional on a set 
of exogenous variables and a set of unknown parameters.  The standard Poisson 
regression model assumption is to use the exponential mean parameterization:  λt = 
exp(Ztβ), where t=1,…,T, Z is a matrix of exogenous variables and β is the vector of 
unknown coefficients to be estimated.  Using the above likelihood function, one can 
represent the sample log-likelihood function for the count model to be:    

    ( )( )
T

t t t t
t 1

L λ y Z β ln y !
=

= - + -å     (1.2) 

where λt=exp(Ztβ) .  The Poisson Maximum Likelihood estimator, β* is the solution to 
the K nonlinear equations corresponding to the 1st order condition for maximum 

likelihood:  ( )( )( )
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residuals yt – exp(Ztβ) sum to 0.  In addition, one can show that the likelihood function 
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shown in (1.2) is globally concave, hence solving these equations via iterative 
algorithms yields unique parameter estimates. 

With the increased proliferation of electronic devices such as televisions and 
computers, one of the contributing factors to electricity consumption is both the number 
of these devices available and how long each of these devices are being used.  Let’s 
examine one piece to this puzzle, the number of devices in the home.  Using the above 
modeling framework, I would like you to examine what determines the number of 
televisions used in the home.  The data file, RECS_Data_assign_4.xlsx is an Excel file 
that contains a portion of the 2009 Residential Energy Consumption Survey (RECS) 
data collected by the Energy Information Administration of the U.S. Department of 
Energy (DOE).  There are a total of 12,083 observations in the base dataset. 

The table to the right shows 
the frequency distribution of 
the number of televisions, 
computers and printers in the 
homes of survey respondents.  
In 2009, 46% of household 
had more than 2 televisions.  
Less than 1.5% of the 
household had no televisions 
in 2009.  Alternatively, 21.6% 
of the surveyed households 
had no computers (desktop or 
portable) in the home.   More 
than 37% of households did 
not have a printer.  Whereas 
more than 9% had more than 
1 printer. 

The file RECS2009_codebook contains a listing of variable definitions.  
(a) (15 pts) Estimate the Poisson regression model using the likelihood function that 

allows for the count variable mean and variance to depend on a set of exogenous 
variables.  Estimate the model where the dependent variable is the number of 
televisions (TVCOLOR) and its mean and variance are assumed to be determined 
by the following variables: 
Intercept, F_S, N_Rooms, StudioD, HHINC,  %<5, %5_14, %15_19, SeniorD, 
ATHOME, TELLWORK,  and PerKWHPR 

where:  F_S = STORIES if the home is a house or NAPTFLRS if an 
apartment (#) 

# of HH % of HH # of HH % of HH # of HH % of HH
0 148 1.2% 2614 21.6% 4530 37.5%
1 2431 20.1% 4979 41.2% 6417 53.1%
2 3977 32.9% 2738 22.7% 958 7.9%
3 2892 23.9% 1099 9.1% 143 1.2%
4 1569 13.0% 420 3.5% 30 0.2%
5 678 5.6% 142 1.2% 4 0.0%
6 255 2.1% 58 0.5% 1 0.0%
7 82 0.7% 12 0.1% 0 0.0%
8 34 0.3% 15 0.1% 0 0.0%
9 8 0.1% 3 0.0% 0 0.0%

10 6 0.0% 2 0.0% 0 0.0%
11 0 0.0% 0 0.0% 0 0.0%
12 2 0.0% 0 0.0% 0 0.0%
13 0 0.0% 0 0.0% 0 0.0%
14 1 0.0% 0 0.0% 0 0.0%
15 0 0.0% 1 0.0% 0 0.0%
Total 12083 100.0% 12083 100.0% 12083 100.0%

No. of TV's No. of Computers# of 
Items

No. of Printers



 3 

    N_Rooms =Total number of rooms excluding bathrooms (#) 

    StudioD = 
1, if home is studio apartment
0, otherwise
ì
í
î

 

 HHINC =  Household gross income using range mid-points ($).  For 
the last category assume a gross income of $200,000; 

 %<5 =  % of HH members< 5 years old 
 %5_14 =  % of HH members between 5 and 14 years of age 
 %15_19 = % of HH members between 15 and 19 years of age 

1 if all household members are more than 59 years of age;
SeniorD

0 Otherwise
ì

=í
î
 

TELLWORK = 1 if at least one household member telecommutes or 
teleworks, 0 otherwise 

ATHOME =  1 if at least 1 household member at home on typical 
week day, 0 otherwise 

PerKWHPR = average price per KWH ($/kwh).    
Note:  Make sure you include an intercept.  Otherwise the model has a difficult 
time obtaining a solution.  
 
To estimate these parameters, use the BHHH algorithm code I distributed in class 
to estimate the ML model in which you use numerical gradients of the log-
likelihood function.  Present the estimated coefficients, associated standard errors 
and total sample log-likelihood function value.  Evaluate one of the measures of the 
degree of explanatory power of the regression model outlined in Greene p. 804-
805. (NOTE:  When implementing the above log-likelihood function you will need 
to evaluate the natural logarithm of the factorial number of TV’s.  Without having 
to actually evaluate the factorial of a large number and then taking the logarithm 
which could cause problems due to numerical accuracy, use the return from the 
following:  gammaln(TVCOLOR+1).1) 

 (b)  (5 pts) Undertake a single likelihood ratio test using the above results to examine 
the null hypothesis that household age compositions of household members as a 
group of exogenous variables do not impact the number of household televisions. 

(c)  (10 pts) Using the results from the Poisson regression model, compare the 
estimated marginal effect of a change in household income, HHINC on the number 
of televisions when the individual is typically at home (ATHOME=1) versus not at 
home (ATHOME=0) during the week. Statistically test whether these two marginal 

                                                
1 The Gammaln function returns the logarithm of the gamma function, which is the 
continuous version of the factorial. 
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impacts are equal. (Note:  For this question, except for ATHOME, the exogenous 
variables should be set at their overall sample mean values) 

(d)  (10 pts) Using the results from the Poisson regression model, evaluate the elasticity 
of a change in gross income on the expected number of televisions.  Estimate this 
elasticity using two methods:  (i) at the mean value of the data; and (ii) the average 
of the elasticity values calculated over all observations.  What are the elasticity 
estimates obtained under both methods?  Statistically test whether these elasticities 
are different from 1.0 individually.  

(e) (5 pts) Use a single statistic to test whether the elasticities calculated in (d) are the 
same value.  

(g) (5 pts) At the mean of the data what is the expected number of televisions?  Is this 
number statistically different from the sample mean of televisions per household? 

 
2.   (25 pts) The assumed equality of conditional mean and variances under the Poisson 

model is one of its major shortcomings.  As Adam will review in lab, the most common 
extension of the Poisson model is the Negative Binomial (NEGBIN) model.  Under the 
NEGBIN specification, the Poisson model is extended by introducing an observation 
specific unobserved effect impacting the conditional mean value.  That is, let’s have:  
ln(µi) = Xiβ + εi where µi is the ith observation’s mean and the disturbance term, εi, is 
either a specification error or cross-sectional heterogeneity that is characteristic of 
micro-level data (Greene, p.806). 

Following Greene (2016), the count variable’s unconditional distribution can be 

represented by the following:  ( ) ( ) ( )
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The distinguishing characteristic of the NEGBIN model is that the distribution has a 
conditional mean of λi and conditional variance, var(yi|X), represented via the 

following: ( ) i
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What is interesting about this specification is that a test of the Poisson distribution can 
be obtained by testing whether (1/γ)=0.  In contrast to the Poisson model, the LLF for 
this type of variable is rather complicated.  After some derivation, the ith observation’s 
NEGBIN LLF is:2 
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2 Alternatively, you can use the mixed-density pdf described at the bottom of page 675 of Cameron and 

Trivedi to create a likelihood function. In this case, include your dispersion parameter 1/a instead of 1/g. 

Recall that the ln(Gamma(.)) is given by the gammaln() function in MATLAB. 
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(a) (10 pts) Estimate the NEGBIN2 count model using the RAND Health Insurance 
Experiment data (newranddata.xls) used in lab #7 with Adam. In other words, you 
are replicating Column NB2-PML of Table 20.5 on page 673 of Cameron and 
Trivedi – your answers should be close to identical. Use the number of doctor visits 
as the dependent variable, and the same set of exogenous variables as used for the 
Poisson regression in lab. The data is already cleaned and should be ready for 
estimation. All you need to do is generate the appropriate log-likelihood function 
for maximization. Use the same starting values as the Poisson estimation in the lab 
file, adding an additional parameter with a reasonable starting value. Present the 
usual regression results in a table. How many iterations did it take to obtain the 
optimal solution?  How does this compare with the estimation in question #1? 

(b) (5 pts) Conduct a likelihood ratio test that the distribution is a Poisson distribution. 
(c) (5 pts) Undertake a Wald test that the distribution is a Poisson distribution. 
(d) (5 pts) What is the result of undertaking an LM test that the distribution is Poisson. 

 
 

3. (55 pts) In a few weeks we will be examining how to estimate what is referred to as a 
truncated regression model.  A truncated dependent random variable is a random 
variable where either an upper portion, bottom portion or both areas of its distribution 
are omitted from the data used in a regression model.  The key concept of random 
variable truncation is that it is some characteristic of the dependent variable is used to 
define the truncation.  That is, the values of exogenous variables are not used to define 
the sample. 
 
Below I show two types of random variable truncation:  lower and upper.   For more 
detail concerning truncated regression models refer to Greene, p. 837-839. An example 
of a regression model where the dependent variable (e.g., household income) has an 
upper (i.e., from above) truncation can be found in Hausman and Wise (1977).  I think 
they do a good job in explaining how they use ML estimation methods to estimate a 
regression model and how they develop the associated LLF used for parameter 
estimation.    
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In this question I would like you to estimate household per capita electricity use 
(PC_Use) but where we only include observations with per capita use is more than 
3,000 KWH (i.e., PC_Use > τ where τ = 3,000).  That is, we have a lower truncation of 
per capita electricity use.  One 
can show that the conditional 
PDF of PC_Use given this 
lower truncation, f(PC_Use| 
PC_Use>τ) can be represented 
via the conditional PDF shown 
to the right where we assume the 
PC_Use is normally distributed.  Note that ϕ is the standard normal PDF and Φ is the 
standard normal CDF, and [1-Φ(•)] is the Prob(PC_Use > τ).3  Given the above, the 
LLF for this truncated regression model, LTrunc, can be represented via the following: 

( )22 t
Trunc t t2 t=1 i=1

T T1 11 τ X β1L ln 2π lnσ y -X β ln 1
2 σ2σ
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where T1 represents the number of observations with a value greater than τ.   
 
Later we will also show that given this lower truncation we have  

                                                

3 In general we know that:  ( ) ( ) ( ) ( ) ( )
( )

2
2 2 2

f y|µ, σ
f y|µ, σ f y|y> τ, µ, σ Pr y> τ f y|y> τ, µ, σ

Pr y> τ
= ® =  

( )

( )

2

2

PC_Use Xβ ε where PC_Use~N Xβ,σ

1 PC_Use Xβ
σf PC_Use | PC_Use τ,Xβ,σ

τ Xβ1
σ

f
s

= +

-æ ö
ç ÷
è ø® > =

-æ ö-Fç ÷
è ø



 7 

E(yi| yi > 0,Xi) = Xiβ + σλi where 
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NOTE for the ease in completing this assignment: in parts (a) – (e), before doing 
any analysis, drop all observations with percapKWH > 10000.4 Without this edit, 
upper-end outliers in the dependent variable make the truncated ML estimation by the 
BHHH algorithm a bit trickier than intended for this course. 
 
(a) (10 pts) Given the above I would like to use another subset of the 2009 RECS 

survey but this time to you want to estimate the following linear regression model: 
PercapKWH = Xβ + ε where ε ~ N(0,σ2) and the exogenous variable matrix X is 
composed of a vector of ones to generate an intercept term and the variables:  
ln(HDD65), ln(CDD65), House_Age, Elec_Pr, Tot_sqFt_H/C, Elec_Stove, 
EnergyStar, Elec_Water, Air_Cond, (Air_Cond × ln(CDD65)), Elec_Heat and 
(Elec_Heat × ln(HDD65)) .  Using your previously developed MATLAB code 
estimate the linear regression model, present the standard regression output 
obtained from estimating this model.  Are the results consistent with your 
expectations?   

(b) (5 pts) At the mean of the data used in estimation, what is the price elasticity?  Is 
this elasticity statistically different from 0? Is it statistically different from -1.0? 

(c) (10 pts) Given the above regression results what is the average marginal impacts of 
a CDD on electricity use for those households with an air conditioning system vs 
those households without an Air Conditioner present? Are these two average 
marginal effects equal to one another from a statistical perspective?  

                                                
4 Unless you’ve ALREADY managed to obtain convergence with your truncated regression in part (d) 

with the full dataset. 
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(d) (15 pts) Now estimate the regression model 
assuming that you only have data on those 
households with more than 3,000 KWH per 
capita electricity consumption (i.e., delete those 
observations with annual KWH’s < 3,000. 
Estimate this truncated regression model using 
maximum likelihood methods.  Present your 
typical maximum likelihood estimation results.  
The figure provides a general overview of how 
you can obtain these truncated regression 
results: 

(e) (15 pts)  Provide an assessment relative to the 
results discussed in (c) and (d) as to the 
implications of asserting that the truncated 
results are representative of the entire 
population?  Provide statistical evaluations to support your comments. 


